

中國科學院為權物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

用于高通粉末衍射谱仪的 位置灵敏型中子探测器

核探测与核电子学国家重点实验室 中国科学院高能物理研究所 报告人:唐彬 2012年8月

outline

1 物理背景--- 散裂中子源

三种典型中子源特点比较

项目	放射性核素中子源	反应堆中子源	散裂中子源
	(a,n)反应	核裂变	高能质子轰击重
中子产生	(g,n)反应	链式反应	
	自发裂变		
反应方式	连续	连续	脉冲
时间结构	无	无	有
中子能谱	窄	较宽	宽
中子通量	$\sim 10^7 n/cm^{2*}s$	$\sim 10^{15} n/cm^{2*}s$	$\sim 10^{17} n/cm^{2*} s$
每产生一中子 靶内能量沉积	0.1~6MeV	180MeV	20~45MeV
本底	市	盲	低

(Updated from Neutron Scattering, K. Skold and D. L. Price: eds., Academic Press, 1986)

散裂中子源世界分布图

1 物理背景--- CSNS谱仪

散裂中子源 China Spallation Neutron Source

1 物理背景--- 高通粉末衍射仪

Moderator		Decoupled water
		moderator (300 K)
Bandwidth(Δλ)		4.5 Å
Max. Beam Size		$40(h) \times 20(w) \text{ mm}^2$
Flux at sample position		$\sim 10^7 n/cm^2/s$
Best Resolution(∆d/d)		0.2% at $2\theta = 150^{\circ}$
Guide		Taper focus, m=3
Source to sample distance L1		30 m
Sample-	$2\theta = 150^{\circ}$	1.5 m
detector	2 <i>θ</i> =90°	2.0 m
distance L ₂	$2\theta = 15^{\circ}$	3.8 m

- > Detection efficiency: >50% @ 1.8Å
- Position Resolution:

 $5mm(H) \times 50mm(V)$

- **≻** Time Resolution : <1µs
- **Count Rate:** 30KHz/m²
- > Active area: 6m²

⁶LiF/ZnS(Ag)+WLSF+MA-PMT

3 闪烁屏性能研究

闪烁屏性能研究 3

704# 250*250mm²

St. Gobain BC-LiF:ZnS 1:2 400µm/1mmAl

E

1-1

⁶LiF/ZnS:Ag闪烁屏

中子源: Cf-252 活度: 2*107Bq 引出孔直径: 10cm 估算通量:~8n/s·cm²

中子能量: 2.13MeV γ能量: 0.84MeV 慢化体厚度:10cm

3.1 ⁶LiF/ZnS:Ag闪烁屏---中子探测效率

neutron detect efficiency of three scintillation screens

Samples	BC704	BC704#	EJ426
Mass ratio of ⁶ LiF vs ZnS(Ag)	1:4	1:2	1:3
Neutron counter rate (n/s*cm ²)	0.53±0.02	0.69±0.03	0.77±0.03
Neutron detection efficiency (%)	23.2±1.0	30.1±1.1	32.4±1.1
Neutron detection efficiency in manual (%)	26.4	None	36.0
MWPC的热中子计数率~1.6n/s*cm²,根据其工作气体的有效厚度,热中子探测效率约70%			采测效率约70%

3.2 ⁶LiF/ZnS:Ag闪烁屏---出射光子数

PMT单光电子峰刻度

Sample	Number of photons
BC704	$(5.76\pm0.03) imes10^{3}$
BC704#	$(6.08\pm0.03) imes10^{3}$
EJ426	$(8.01\pm0.03) imes10^3$

▶三种闪烁体样品中, EJ426的光产额最大同时 热中子探测效率也最高, 是较好的候选闪烁体。

3.3 ⁶LiF/ZnS:Ag闪烁屏---n/γ抑制能力

CAEN N415

γ灵敏度实验装置

的区分中子和低能γ信号;

▶利用幅度甄别的方法可以很好

4 其他关键器件性能研究

BCF-91A

波移光纤

闪烁体发射光谱&波移光纤发射吸收谱

H8500 光倍管及其后续读出电路

X = (A + B) / (A + B + C + D)Y = (A + D) / (A + B + C + D)

散裂中子源 China Spallation Neutron Source

探测器样机研制

800 1000 1200 1400 1600 1800 2000 ADC Channel

5 结论

- ◆ 三种闪烁体样品中, EJ426的光产额最大同时热中子探测效率也最高, 是较好的候选闪烁体;
- ◆ 6LiF:ZnS(Ag) 1:3 闪烁体热中子探测效率为~32%,双层条件下可以实现>50%的热中子探测效率;
- ♦ 估算中子信号的大小:

Number of Photons Counted from a Scintillation Event:

 $\mathbf{N} = \mathbf{Y}_{\text{eff}} \times \Omega \times \mathcal{E}_{\text{shift}} \times \mathcal{E}_{\text{reemission}} \times \mathcal{E}_{\text{trap}} \times \mathcal{E}_{\text{transmission}} \times \mathcal{E}_{\text{PMT}}$

6LiF/ZnS:Ag闪烁体表面的出射光产额约 8,000 photons/neutron, BC-91A 的有效光传输效率 Ccollect 约5%,到达MA-PMT的光电子数为50/neutron,中子信号约8pC;

◆ 基于6LiF/ZnS:Ag+WLS+MA-PTW 结构的二维位置灵敏型闪烁体中子探测器,能够满足 CSNS-高通量粉末衍射仪的物理需求,实现探测效率好于50%@1.8A;位置分辨好于 5mm(H)×50mcm (V)的物理设计;

