## 大亚湾中微子探测器



## 衡月昆 中科院高能所 On behalf of Daya Bay Collaboration 2010-08-14

15th 核电子学与核探测技术年会2010-8-14 衡月昆







- 大亚湾中微子实验
- 中微子探测研制与进展
  - 原理与结构
  - -安装
  - -液闪
  - PMT
  - 电子学
  - 刻度
  - dryrun
- 总结







- 一句话:测量sin<sup>2</sup>20<sub>13</sub>达到0.01的敏感度
- 为什么测量 sin<sup>2</sup>2θ<sub>13</sub> ?

- 中微子的6个参数,3个半已知,2个半未知





- 为什么sin<sup>2</sup>2θ<sub>13</sub>达到0.01的敏感度?
  - 决定着长基线中微子 实验的方向

"We recommend, as a high priority, ..., An expeditiously deployed multi-detector reactor experiment with sensitivity to  $\overline{v_e}$  disappearance down to  $\sin^2 2\theta_{13}$ =0.01" ---- APS Neutrino Study, 2004





• 反应堆: 
$$\overline{V}_{e}$$
 消失  
- 物理上, 干净  $P_{ee} \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \left( \frac{\Delta m_{31}^{2} L}{4E_{v}} \right) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left( \frac{\Delta m_{21}^{2} L}{4E_{v}} \right)$   
- 经济上, 便宜





为什么在大亚湾反应堆?



- 强大的功率,降低统 计误差
  - 统计量正比于反应堆 功率、探测器靶质量、 取数时间
  - -大亚湾反应堆,3期、 6个反应堆
- 附近多山的环境,降 低系统误差
  - 300m地下降低宇宙 线本底2个量级







### DayaBay and LingAo NPP



### Dayabay NPP 2.9GW×2

### LingAo NPP 2.9GW×2

...............



## The Daya Bay Collaboration

#### Political Map of the World, June 1999



#### North America (14)(~73)

BNL, Caltech, George Mason Univ., LBNL, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI, UC-Berkeley, UCLA, Univ. of Houston, Univ. of Wisconsin, Virginia Tech.,

Univ. of Illinois-Urbana-Champaign

#### **Europe (3) (9)**

JINR, Dubna, Russia

Kurchatov Institute, Russia

Charles University, Czech Republic

### Asia (18) (~125)

- IHEP, Beijing Normal Univ., Chengdu Univ.
- of Sci. and Tech., CGNPG, CIAE, Dongguan
  - Polytech. Univ., Nanjing Univ., Nankai Univ.,

Shandong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong,

### ~ 207 collaborators ninese Univ. of Hong Kong,

ntarctica

National Taiwan Univ., National Chiao

15<sup>th</sup> 核电子学与核探测技术年会2010**Tung復Jniv., National United Univ.**7







## • 8项提议,3项进行中

- 法国, Double Chooze
- 韩国, Reno
- 中国, DayaBay
- 预期结果比较

#### 我们的特点

#### Table Comparison of three experiments

| Experiment          | Power | Baseline    | Target mass | Overburden | Sensitivity |
|---------------------|-------|-------------|-------------|------------|-------------|
|                     | (GW)  | near/far(m) | near/far(t) | (MWE)      | (90%C.L.)   |
| Double <u>Chooz</u> | 8.4   | 150/1050    | 10/10       | 60/300     | 0.03        |
| Dayabay             | 17.4  | 400/1800    | 40/80       | 300/1000   | 0.01        |
| RENO                | 17.3  | 150/1500    | 20/20       | 230/675    | 0.03        |



















• Inverse  $\beta$ -decay :

 $\bar{\nu}_e + p \rightarrow e^+ + n$ 

Scintillator (LS)

• Trigger on 2-fold coincidence:

• Prompt signal from e<sup>+</sup>

on Gadolinium pprox 30 $\mu$ s

Detector with Gd doped Liquid

Delayed signal from n capture





#### Prompt signal



### Delayed signal













## AD的三个要求



### • 材料的低放射性要求

- 所有AD内材料要求检查放射性 ppm~ppb量级
- 清洁要求: 灰尘中的放射性也 不能忽略:
  - 所有部件安装前要清洁
  - 3m罐、反射板、液闪的生产 过程要求清洁
  - 安装清洁间万级清洁间
- 材料与液体的兼容性要求
- **不漏:** 4种液体, 3个罐, 上 千个O圈
  - 检漏几乎处处进行: 3mAV、
     4mAV、SSV、PMT、刻度装置、monitor装置等等
  - 检漏方法多样:

| mples from Daya Bay                           | Date received | Al Smith label | Date measured | Weight (gm) | Detector ID | Data file | Count time | U238                                                              | Th232        | K            |  |
|-----------------------------------------------|---------------|----------------|---------------|-------------|-------------|-----------|------------|-------------------------------------------------------------------|--------------|--------------|--|
| iya Bay rock sample (granitc)                 |               |                | 5-Jan-04      | 203         | MERLIN      |           |            | 10.4(1) ppm                                                       | 33.0(2) ppm  | 3.66(1) pct  |  |
| unamatsu #TA2116 glass                        |               |                | 26-Sep-05     |             |             |           |            | 100 ppb                                                           | 150 ppb      | 130 ppm      |  |
| otonis glass sample                           |               |                | early in 2006 | 26          | MAEVE       |           |            | 0.18(1) ppm                                                       | 0.056(6) ppm | 0.011(1) pct |  |
| njing glass sample l                          |               |                | 30-Mar-05     |             |             |           |            | 105 ppb                                                           | 70 ppb       | 300 ppm      |  |
| njing glass sample 2                          | 2-Jun-06      |                |               | 236         | MAEVE       | CL-17     | 403920     | 28(1) ppb                                                         | 85(4) ppb    | 135(6) ppm   |  |
| PMT glass                                     |               |                |               | 568         | MERLIN      | 21217     | 174000     | 81 ppb                                                            | 73 ppb       | 130 ppm      |  |
| EP S-308 (E-308-16) weld rod coating          |               |                |               | 64.4        | MERLIN      | 21495     | 22800      | 15.5(3) ppm                                                       | 18.8(10) ppm | 3.62(5) pet  |  |
| EP SW-308L (E308LT1-1/-4) welding wire        |               |                |               | 85.5        | MERLIN      | 21501     | 24300      | 7.6(2) ppm                                                        | 4.0(2) ppm   | 0.13(1) pet  |  |
| EP ST-308L (ER308L) welding wrie              |               |                |               | 130         | MERLIN      | 21529     | 686400     | 0.08(1) ppm                                                       | 0.06(1) ppm  | 0.008(1) pct |  |
| PMT internal parts                            |               |                |               | 128         | MERLIN      | 21249     | \$2200     | 20 ppb                                                            | <30 ppb      | 30 ppm       |  |
| ong Kong SST                                  | 13-Sep-07     |                |               | 485         |             |           |            |                                                                   |              |              |  |
| VL GdCl3 sample                               |               | GDCL-01        |               | 1000        | MAEVE       | CM-73     | 502952     | 0.5(2) ppb                                                        | 3.9(4) ppb   | ND(3) ppm    |  |
| EP GdCl3 (99.995%) w/o purification 江苏盐城阜宁    | 22-Oct-07     | GDCL-02A       |               | 1040        | MERLIN      | 22116     | 75600      | <l ppb<="" td=""><td>8 ppb</td><td>ND ppm</td><td></td></l>       | 8 ppb        | ND ppm       |  |
| EP GdCl3 w purification 江苏盐城阜宁                | 22-Oct-07     | GDCL-02B       | 10-Feb-08     | 992         | MAEVE       | CM-96     | 304095     | 1.5(3) ppb                                                        | <0.6 ppb     | <0.4 ppm     |  |
| etglas 2714A                                  | 19-Nov-07     |                | 17-Jan-08     | 1132        | Merlin      | 22182     | 67800      | 5(2) ppb                                                          | 30(5) ppb    | 5(2) ppm     |  |
| otonis XP1806, SN 971                         | 4-Dec-07      |                | 12-Dec-07     | 884         | MERLIN      | 22146     | 34200      | 0.229(5) ppm                                                      | 0.081(5) ppm | 0.017(1) pet |  |
| EP Gd2O3 (99.99%) Guangdong Huizhou 广东惠州瑞尔    | 19-Dec-07     | GDCL-03        | 17-Feb-08     | 1000        | MAEVE       | CN-08     | 245729     | <0.2 ppb                                                          | 1.4(6) ppb   | 0.8(5) ppm   |  |
| EP Gd2O3 C3N5 Kanzhou Deshi 江西赣州德施普           | 19-Dec-07     | GDCL-04        |               |             |             |           |            |                                                                   |              |              |  |
| EP Gd2O3 (99.995%) Jiangxi Jiasheng 江西佳盛      | 19-Dec-07     | GDCL-05        | 17-Feb-08     | 1000        | MAEVE       | CN-10     | 171767     | <0.3 ppb                                                          | 12(2) ppb    | 1.1(6) ppm   |  |
| EP GdCl3.xH2O (99.99%) Guangdong Huizhou 广东惠州 | 19-Dec-07     | GDCL-06        | 17-Feb-08     | 1000        | MAEVE       | CN-12     | 168659     | <0.3 ppb                                                          | 1.8(8) ppb   | <0.4 ppm     |  |
| EP SST SF05764 (4 circular pieces)            | 11-Jan-08     |                | 1-Feb-08      | 1405        | MERLIN      | 22309     | 162001     | <l ppb<="" td=""><td>&lt;2 ppb</td><td>5(1) ppm</td><td></td></l> | <2 ppb       | 5(1) ppm     |  |
| EP SST SF05765 (4 circular pieces)            | 11-Jan-08     |                | 1-Feb-08      | 1176        | MERLIN      | 22287     | 162000     | <l ppb<="" td=""><td>&lt;2 ppb</td><td>3(1) ppm</td><td></td></l> | <2 ppb       | 3(1) ppm     |  |
| EP SST SF05766 (4 circular pieces)            | 11-Jan-08     |                | 1-Feb-08      | 1397        | MERLIN      | 22285     | 98445      | <l ppb<="" td=""><td>&lt;2 ppb</td><td>5(1) ppm</td><td></td></l> | <2 ppb       | 5(1) ppm     |  |
|                                               |               |                |               |             |             |           |            |                                                                   |              |              |  |









图 需要检漏的刻度孔



图 需要检漏的中心刻度孔



#### 图 钢盖上设备的检漏

15<sup>th</sup> 核电子学与核探测技术年会2010-8-14 衡月昆







- 主要部件研制进展:
  - 钢罐(IHEP): 已完成6个, 今年将全部完成8个
  - 反射板(IHEP): 全部完成
  - 支持平台(IHEP): 全部完成
  - 液闪设备(IHEP): 就绪
  - PMT(LBL): R5912全面到货、检查完成
  - IAV (台湾):完成2个,第3、4个已经到货
  - OAV (UW):完成2个,第3、4进行中
  - 灌装设备(UW): 2010年底完成并运到
  - 自动刻度装置(Caltech):加工完成
  - 手动刻度装置(原子能院):明年完成
  - Monitor (香港中文大学、东莞理工):完成2套,还差6套



大型部件的生产





图 5m钢罐的生产(广东)



图 3mAV的生产(台湾)



图 反射板的生产(福建)



图 4mAV的生产(美国)



## AD大型部件运输













AD运入地下实验完成



- AGV车:可以运输 装满液体的110吨AD
- 实验: 隧道、 5号厅、1号厅







15th 核电子学与核探测技术年会2010-8-14 衡月昆









- 2009年3月开始现场组装,8月Prototype组 装完
- 2009年9月开始AD#1和AD#2的正式组装, 目前已经接近组成完成
- 计划: 2012年完成8个AD的安装



AD 组装的一些图片

















液闪(高能所)



- 共需要185吨0.1% 掺钆液闪,生 产后统一存放保证8个中微子探测
- , 泄漏问题已经解决
- 生产人员培训已经完成







15<sup>th</sup> 核电子学与核探测技术年会2010-8-14 衡月昆



液闪灌装设备(UW)



- 靶物质掺钆液闪:要求质量精度0.1%
- 三种液体同时灌装,液面差<15mm,防止有机玻璃罐破裂





## PMT (Berkeley)



- PMT R5912: 192X8
  - 量子效率: >25%@420nm
  - 峰谷比:>2.5
  - 增益: 2X10<sup>7</sup>
  - 阈值: 1/4光电子
  - 暗计数率: <10kHz
  - 防止反射,周围黑板吸光
  - 环氧浇注, 防油
  - 放磁场薄膜包裹
- 进展:
  - PMT全部检测完成(东莞理工)
  - 梯架、rails等部件全部加工完成
  - 电缆引出drybox全部加工完成
  - AD1和AD2已经安装完成











| Quantity                |              | Specification                       |  |  |
|-------------------------|--------------|-------------------------------------|--|--|
| Charge dynamic range    |              | 0-1800 pC                           |  |  |
| Fine Range              |              | 0-160 pC (100pe@PMTgain 2E7)        |  |  |
|                         | Coarse range | 160-1800 p.C                        |  |  |
| Shaping width           |              | <325ns down to 1%                   |  |  |
| Peak error              |              | < 4% @ 40MSPS                       |  |  |
| ADC bit resolutio       | n            | < 10% @ 1.6 pC                      |  |  |
| ADC Bits                |              | 12 bits for fine range              |  |  |
|                         |              |                                     |  |  |
| ADC Sampling rate       |              | 40 MSPS                             |  |  |
| Disc. threshold         |              | 0.25 p.e. (programmable each chnl.) |  |  |
| Time range              |              | 0-500 ns                            |  |  |
| Time bin                |              | 1.5625ns                            |  |  |
| <b>Timing Precision</b> | (RMS)        | <1 ns                               |  |  |
| Multi-hit separati      | on           | Yes                                 |  |  |
| Multi-hit resolutio     | n            | 25 ns                               |  |  |



电子学进展



- 单机箱测试OK,已用于dryrun
  - Electronic subsystem for 1 AD was setup at IHEP in last Oct.
- Consists of 12 FEEs + 1 LTB + 1FANOUT +1 PPC
- 8 hours \* 7 days aging done
- Tests done
  - CBLT function test
  - FEE self-test
  - Different trigger mode were tested
    - ESUM, nPMT, periodical











- Accuracy: ~1 cm
- Sources
  - LED
  - AmC(n) + Co60(γ)
  - Ge68(e<sup>+</sup>)

- Deployment plan
  - Weekly deployment
  - several positions per axis
  - 3-5 mins per position



• 探测器、刻度、电子学、满控制、触发、DAQ、在线与离线数据库都进行了测试,除了没有液闪,证明了系统可以工作。



15<sup>th</sup> 核电子学与核探测技术年会2010-8-14 衡月昆



AD#1 Dry Run 数据分析(I)







## AD#1 Dry Run 数据分析 (II)





<sup>15&</sup>lt;sup>th</sup> 核电子学与核探测技术年会2010-8-14 衡月昆







- 大亚湾实验物理意义显著
- 大亚湾中微子探测器研制的特点与难点
  - 极低本底探测器: 材料放射性低、安装与内部部件清洁、隧道与地下实验大厅
  - 液体(4种)探测器: 要求材料兼容、所有接口不漏
  - 首次与美方完全交叉合作的大型探测器
  - 异地工作,长期出差,人员、后勤与运行保障吃力
- 进展与计划:
  - 2010年10月完成首对AD的安装,电子学、DAQ系统已经可以工作
  - 2010年基本完成土建一标的工作
  - 液闪主要原料LAB就位,生产设备就位,即将开始生产
  - Muon系统安装即将开始
  - 2011年夏天,开始一号厅2个AD的取数
  - 2012年完成8个AD的安装











# 下面是备用!

### **Status of Civil Construction**



Fall Hall

Surface Assembly Bldg (SAB)



Completed! Total length ~ 3.2km



Installation completed

S Mixing Hall

SAB in use since Mar 2009

Daya Bay Near Hall Civil construction completed



AD主要安装步骤







## Muon 反符合探测器





- Water Čerenkov
  - ADs submerged in water, provide ≥ 2.5m shielding against radioactivity
  - Inner/Outer regions optically separated
  - 8-inch PMTs on frames (289/near, 384/far site)
- RPC—Resistive Plate Chamber
  - 4 layers in modules
  - Layer of modules covers water pool
  - Provides independent veto system
- Combined efficiency of both systems > 99.5%





### How to measure $\sin^2 2\theta_{13}$ to 0.01 of sensitivity-

- Near and far detectors, check the reactor power
- Good and stable Gd-LS
- Background: Go deeper, good muon system
- Lower threshold
- Identical detectors: can be swapped to subtract the non-correlated error, like protons' number and efficiencies.

| Source of uncertainty              |                | Chooz      | Daya Bay (relative) |       |                 |  |
|------------------------------------|----------------|------------|---------------------|-------|-----------------|--|
|                                    |                | (absolute) | Baseline            | Goal  | Goal w/Swapping |  |
| # protons                          |                | 0.8        | 0.3                 | 0.1   | 0.006           |  |
| Detector                           | Energy cuts    | 0.8        | 0.2                 | 0.1   | 0.1             |  |
| Efficiency                         | Position cuts  | 0.32       | 0.0                 | 0.0   | 0.0             |  |
|                                    | Time cuts      | 0.4        | 0.1                 | 0.03  | 0.03            |  |
|                                    | H/Gd ratio     | 1.0        | 0.1                 | 0.1   | 0.0             |  |
|                                    | n multiplicity | 0.5        | 0.05                | 0.05  | 0.05            |  |
|                                    | Trigger        | 0          | 0.01                | 0.01  | 0.01            |  |
|                                    | Live time      | 0          | <0.01               | <0.01 | <0.01           |  |
| Total detector-related uncertainty |                | 合实验的会议2    | 010-388% 復          | 月0日8% | 0.12%           |  |

### Antineutrino Detection principle

#### Prompt Energy Signal

#### Delayed Energy Signal







#### • ID

- No position reconstruction
- Time windows for two prompt and delayed signals:
- Energy cuts

#### • BG

- <sup>8</sup>He and <sup>9</sup>Li: generated by cosmic ray, decays to βand n
- Fast Neutrons: generated by cosmic ray, proton hit out give prompt signal, and slow neutron give delayed signal
- Occidentals: natural radiation give prompt signal, cosmogenic neutron or  $\beta$  ray give delayed signal







- GEANT4-based simulations
- Idealized 3-zone detector plus reflectors
- Developing realistic geometry in simulations





联合实验室会议2010-4-26 衡月昆













Phase-II, filled with half-ton 0.1% Gd-LS, started in Jan. 2007 and keep running until now.

The prototype is also used for the FEE and Trigger boards testing.



### **Gd-Liquid Scintillator Test Production**





0.1% Gd-LS in 5000L tank

Gd-LS will be produced in multiple batches but mixed in reservoir on-site, to ensure identical detectors.



联合实验室会议2010-4-26 衡月昆



## Sensitivity of Daya Bay



联合实验室会议2010-4-26 衡月昆





### **Background sources in the AD**



GOAL: Use a thick water shield to reduce neutron and rock  $\gamma$  bkgds





## The He<sup>8</sup>/Li<sup>9</sup> background

 $He^{8}/Li^{9}$  generated by showers from cosmic muons in the AD LS:



Q= 13 MeV, au=178 msec  $\Rightarrow$  poor spatial correlation with  $\mu$  track.

Computed rates (Hagner et. al.) events/module/day:

|                                   | DYB | LA  | Far  |
|-----------------------------------|-----|-----|------|
| $ar{ u_e}$ IBD                    | 840 | 740 | 90   |
| $^{9}\mathrm{Li}+^{8}\mathrm{He}$ | 3.7 | 2.5 | 0.26 |

But it can be measured ! ightarrow B/S pprox 0.3%



 $\sim$ 





### **Fast Neutron Background**



Fast neutron simulation results assuming active water shield with 99.5% muon tagging eff ( events/day/20T module) :

|   |     | I: From untagged $oldsymbol{\mu}$ | II:Rock neutrons | ll:Total/Signal   |
|---|-----|-----------------------------------|------------------|-------------------|
|   | DYB | 0.10                              | 0.5              | $6	imes 10^{-4}$  |
|   | LA  | 0.07                              | 0.35             | $6	imes 10^{-4}$  |
| 1 | Far | 0.01                              | 0.03             | $4 	imes 10^{-4}$ |





### **Accidental background rates**

Prompt:  $\gamma >$  1MeV from radioactivity  $\sim$ 40Hz/AD module with shielding Delayed:: 1) untagged single neutron capture 2) cosmogenic beta emmiters (6-10MeV, mostly  ${}^{12}$ B/ ${}^{12}$ N) 3)U/Th  $\rightarrow$  O, Si ( $\alpha, n, \gamma [6 - 10 \text{ MeV}]$ )



|                             | DYB                    | LA                     | Far                   |
|-----------------------------|------------------------|------------------------|-----------------------|
| Signal rates                | 840/day                | 740/day                | 90/day                |
| 1) neutrons (singles)       | 18/day                 | 12/day                 | 1.5/day               |
| 2) $eta$ s (singles)        | 210/day                | 141/day                | 14.6/day              |
| 3) $lpha,n\gamma$ (singles) | <10/day                | <10/day                | <10/day               |
| Coinc rate                  | 2.3/day                | 1.3/day                | 0.26/day              |
| B/S                         | $\sim 3 	imes 10^{-3}$ | $\sim 2 	imes 10^{-3}$ | $\sim 3	imes 10^{-3}$ |

1

Untagged background rates are tiny and subtractable