

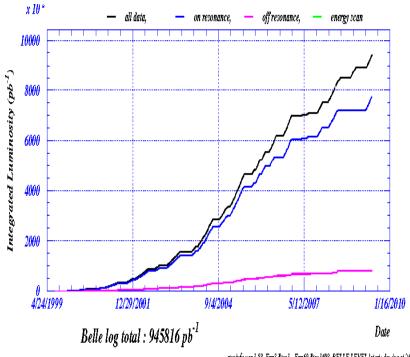
$D^{O}-\overline{D}^{O}$ Mixing and other Charm Decays at Belle

Li ZHAO

USTC On behalf of the Belle Collaboration

Nanchang conference on high energy physics

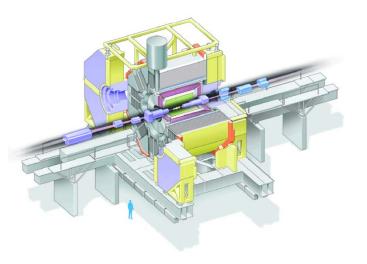
April 16-21, 2010, Nanchang University, CHINA

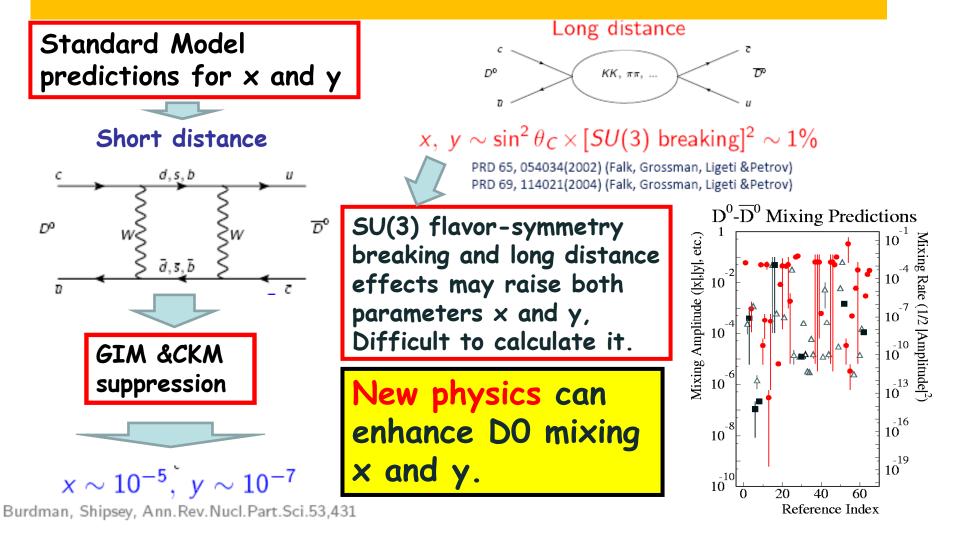

Outline

DO mixing and CPV

- Introduction \checkmark
- ✓ DO->K+PI-
- ✓ DO->K+K-/PI+PI-
- \checkmark D0->Phi(1020)Ks (in D0->KsK+K-)
- ✓ DO->Ks pi+pi-
- ✓ D0->Ks K+K-
- > Other charm decays
 - ✓ D0->|+|-
 - ✓ D(s)->Ksh+
 - ✓ Ds->K+K+PI-
- **Conclusions** D0 mixing and other charm

KEKB and Belle


the largest integrated luminosity in the world


rinninfo ver.1.58 Exo3 Rinnl - Exo69 Rinnl408 BELLE LEVEL latest: dav is not 24 hours

Physics: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow bb$ Reaction cross section: $\sigma(bb) = 1.1 \text{ nb},$ $\sigma(cc) = 1.3 \text{ nb}$

Beside B mesons also largest sample of charm hadrons

DO mixing-Introduction

CPV of charm decays

CPV of charm decays in the SM is strongly suppressed by CKM, negligible.

SM predictions for direct CPV in SCS decays are at most of the order of 10^{-3}

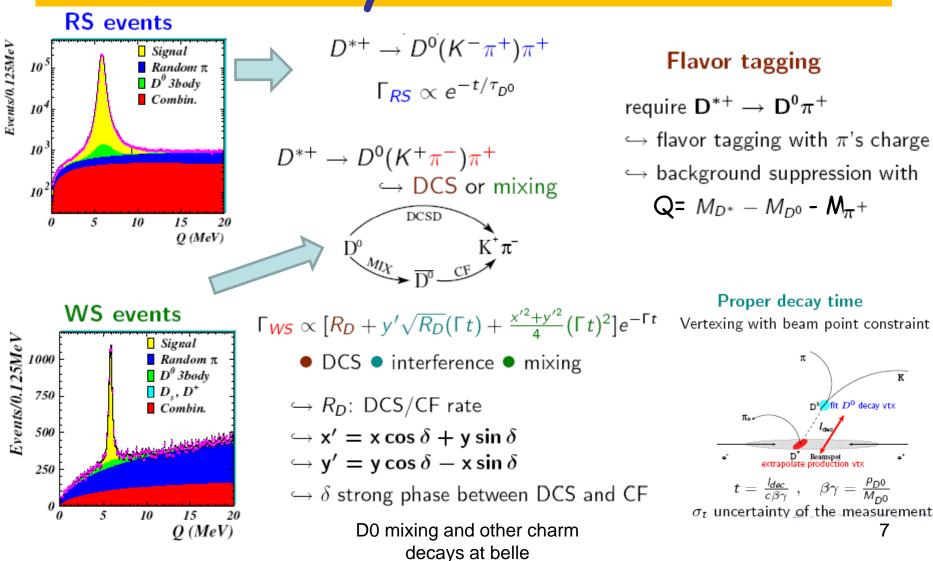
Observation of large O(1%) CPV in charm-decays would be a sign of new physics, similar as other FCNC(Flavor Changing Neutral Current) processes.

Classification of CP-violating effects:
$$\hookrightarrow \begin{bmatrix} \frac{A}{A} \end{bmatrix}$$

$$A_{CP} = \frac{\Gamma(D \rightarrow f) - \Gamma(\overline{D} \rightarrow \overline{f})}{\Gamma(D \rightarrow f) + \Gamma(\overline{D} \rightarrow \overline{f})} = a_f^d + a_f^m + a_f^i \qquad a_f^m: C$$

 $\begin{array}{l} \mathbf{a}_{\mathbf{f}}^{\mathbf{d}} \colon CP \text{ violation in decay} \\ \hookrightarrow \left| \frac{A_f}{\overline{\mathcal{A}_f}} \right| \equiv 1 + \frac{A_D}{2} \ (\mathcal{A}_D \neq 0) \\ \mathbf{a}_{\mathbf{f}}^{\mathbf{m}} \colon CP \text{ violation in mixing} \\ \hookrightarrow \left| \frac{q}{p} \right| \equiv 1 + \frac{A_M}{2} \quad (\mathcal{A}_M \neq 0) \end{array}$

$$\mathbf{a}_{\mathbf{f}}^{\mathbf{i}}$$
: *CP* violation in interference $(f = \overline{f}) \rightarrow \phi = \arg\left(\frac{q}{p}\frac{\overline{A}_{f}}{A_{f}}\right) (\phi \neq 0)$


DO mixing Formulae

The time evolution of the $D^0 - \overline{D^0}$ Eigenstates D_1, D_2 have masses M_1 , M_2 and widths Γ_1, Γ_2 , System is described: $i\frac{\partial}{\partial t} \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix} \quad \begin{array}{c} \text{Mixing occurs when there is a} \\ \textbf{Mixing occurs of the set of t$ non-zero mass difference $\Delta M = M_1 - M_2$ as mass eigenstates D_1 , D_2 $|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$ or lifetime difference $\Delta \Gamma = \Gamma_1 - \Gamma_2$ $|D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$ For convenience define quantities where $|q|^2 + |p|^2 = 1$ and x and y: $x = \frac{\Delta M}{\Gamma}$, $y = \frac{\Delta \Gamma}{2\Gamma}$ $\left(\frac{q}{p}\right)^2 = \frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}$ where $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

time evolution of flavor eigenstate

$$|D^{0}(t)\rangle = \left[|D^{0}\rangle cosh\left(\frac{ix+y}{2}t\right) + \frac{q}{p}|\bar{D}^{0}\rangle sinh\left(\frac{ix+y}{2}t\right)\right] \times e^{-\frac{1}{2}(1+\frac{im}{\Gamma})t}$$

DO mixing in DO WS hadronic decays: DO->K+PI-

DO mixing in DO WS hadronic decays: DO->K+PI-

Belle [400 fb ⁻¹]	Fit case	Parameter	Fit result	95% C.L. interval
	No CPV	$R_D(\times 10^{-3})$	3.64 ± 0.17	(3.3,4.0)
PRL96, 151801 (2006).		$x^{2}(\times 10^{-3})$	$0.18^{+0.21}_{-0.23}$ $0.06^{+0.40}_{-0.39}$	< 0.72
		$y'(\times 10^{-2})$	$0.06^{+0.40}_{-0.39}$	(-0.99, 0.68)
1000 ag 1000 ag 1000 ag 1000 ag 1000 ag 1000 ag 1000 ag 1000 b to a D3body combinatoric b to a D3body combinatoric b to a D3body b to a D3body b to a D3body combinatoric b to a D3body b to a D3body combinatoric b to a b combinatoric combinatoric b to a b combinatoric b to a b		$R_M(\times 10^{-3})$	-	$(0.63 \times 10^{-5}, 0.40)$
2 1000 Combinatoric	CPV	$x'^{2}(\times 10^{-3})$	-	< 0.72
🚆 📩 📩 🛄 Mixing (95%UL)		$y'(\times 10^{-2})$	-	(-2.8, 2.1)
500 - The second		$R_M(\times 10^{-3})$	-	< 0.40
t t		A_D	0.023 ± 0.047	(-0.076, 0.107)
		A_M	0.67 ± 1.20	(-0.995, 1.0)
			$9.4(84.5) \pm 25.3$	No limits
-2000 0 2000 4000 Propertime (fs)	No mixing	R _D	3.77 ± 0.08 (st.	at.) ± 0.05 (syst.)
			⁷ ₽ 20 F	
CPV is not observed	Bel	lle [400 fb ⁻¹]	× 20	-
	PPI	96, 151801 (2006).	E \	no CPV (sint only)
			- 10 E L	
D^0 Fit separately \overline{D}^0	$A_D = ($	$(23\pm47) imes10^-$		
	AM	$= 0.67 \pm 1.2$	0	
			>	
			-10	
$(R_D^+, x'^{+2}, y'^{+})_{D^0} \iff (R_D^-, x'^{-2}, x'^{-2})$	$y'^{-})_{\overline{D}^{0}}$			
			-20 -	
CPV in decay $\Rightarrow A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}; R_D$	(DCS/CE	rata)	5/]
$CFV \text{ in decay} \Rightarrow A_D = \frac{1}{R_D^+ + R_D^-}, R_D$		ratej	0 0.2	2 0.4 0.6 0.8
				x' ² × 10 ⁻³
<i>CPV</i> in mixing $\Rightarrow A_M = \frac{R_M^+ - R_M^-}{R_M^+ + R_M^-}; R_M$	$-\frac{x^2+y^2}{y^2}$ (r	mixing rate)		
$R_{M}^{+} + R_{M}^{-}$, $R_{M}^{+} + R_{M}^{-}$	- ₂ (1	mang rate)	No-mixing	point (0,0) is
	0 miving and			-
D	•	other charm	3.9% , signi	Ticance: 2
	decays a	at delle		

DO mixing in DO->K+K-, PI+PI-Decays

Measurement of lifetime difference between $D^0 \to K^-\pi^+$ (*CP*-mixed) and $D^0 \to K^+K^-, \pi^+\pi^-$ (*CP*-even) decays $\hookrightarrow \Gamma(D^0, \overline{D}^0 \to K^{-,+}\pi^{+,-}) \propto e^{-t/\tau_{D^0}}$ $\hookrightarrow \Gamma(D^0, \overline{D}^0 \to K^+K^-, \pi^+\pi^-) \propto e^{-(1+y_{CP})t/\tau_{D^0}}$

$$\mathbf{y}_{\mathsf{CP}} \equiv \frac{\tau_{\mathsf{K}\mp,\pi\pm}}{\tau_{\mathsf{K}^+\mathsf{K}^-,\pi^+\pi^-}} - \mathbf{1} = \frac{1}{2} \left(\left| \frac{\mathsf{q}}{\mathsf{p}} \right| + \left| \frac{\mathsf{p}}{\mathsf{q}} \right| \right) \mathbf{y} \cos \phi - \frac{1}{2} \left(\left| \frac{\mathsf{q}}{\mathsf{p}} \right| - \left| \frac{\mathsf{p}}{\mathsf{q}} \right| \right) \mathbf{x} \sin \phi$$

In limit of no *CPV* $\mathbf{y}_{\mathsf{CP}} = \mathbf{y}$

They all have the high signal purity (>90%)

CP Violation

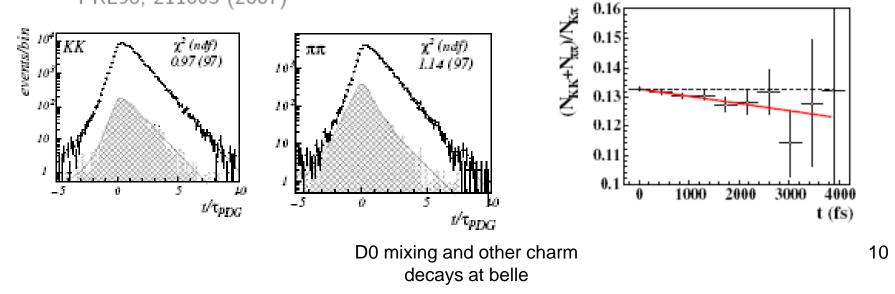
$$\mathsf{A}_{\Gamma} = \frac{\tau(\overline{\mathsf{D}}^{0} \to \mathsf{f}_{\mathsf{CP}}) - \tau(\mathsf{D}^{0} \to \mathsf{f}_{\mathsf{CP}})}{\tau(\overline{\mathsf{D}}^{0} \to \mathsf{f}_{\mathsf{CP}}) + \tau(\mathsf{D}^{0} \to \mathsf{f}_{\mathsf{CP}})} = \frac{1}{2} \left(\left| \frac{\mathsf{q}}{\mathsf{p}} \right| - \left| \frac{\mathsf{p}}{\mathsf{q}} \right| \right) \mathsf{y} \cos \phi - \frac{1}{2} \left(\left| \frac{\mathsf{q}}{\mathsf{p}} \right| + \left| \frac{\mathsf{p}}{\mathsf{q}} \right| \right) \mathsf{x} \sin \phi$$

DO mixing in DO->K+K-, PI+PI-Decays

Fit to the proper decay time distribution

$$\frac{dN}{dt} \propto \int e^{-t'/\tau} \cdot R(t-t')dt' + B(t)$$

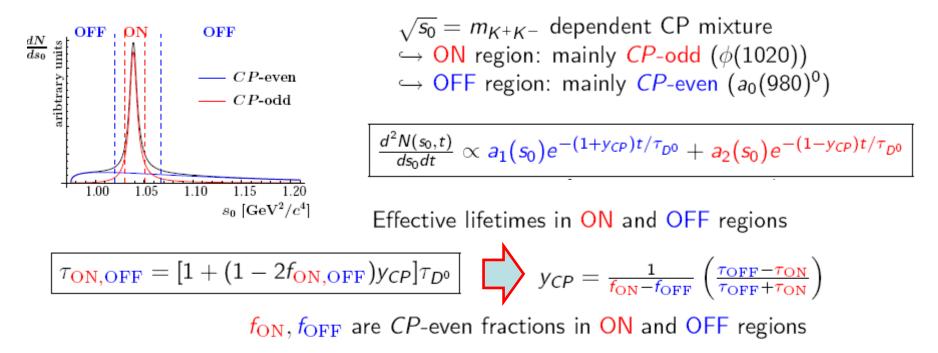
$$\downarrow$$


$$R(t-t') = \sum_{i}^{N} f_{i} \sum_{k=1}^{3} w_{k}G(t-t', \sigma_{ik}, t_{0})$$

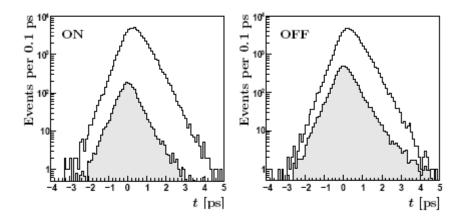
$$\frac{\text{significance: } 3.2\sigma, \text{ the first evidence}}{\text{y}_{CP} = (1.31 \pm 0.32 \pm 0.25)\%}$$

$$P(t) = CPV \text{ is not observed}$$

$$A_{\Gamma} = (0.01 \pm 0.30 \pm 0.15)\%$$


PRL98, 211803 (2007)

DO mixing in DO->KsPhi decays


arXiv:0905.4185 (PRD accepted) [673 fb⁻¹]

Measurement of lifetime difference between CP-even and CP-odd eigenstates

Topologically equal events in ON and OFF regions \rightarrow reduced effects of resolution function.

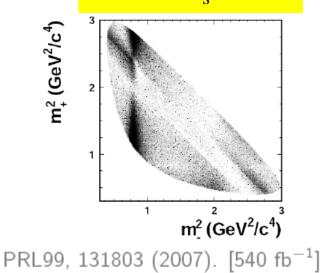
D0 mixing in D0->KsPhi decays

Untagged sample used to increase the statistics

Region	ON	OFF
Signal [$ imes 10^3$]	72	62
Purit	97%	91%

Background estimated from sidebands in $(m_{K_S^0K^+K^-}, m_{K_S^0})$ plane f_{ON} , f_{OFF} from fit to $m_{K^+K^-}$ using 8-resonance Dalitz model

 $\tau_{\rm ON},~\tau_{\rm OFF}$ determined from mean proper decay times of all events and background events


$$\hookrightarrow \tau_{\text{ON,OFF}} + t_0 = \frac{\langle t \rangle_{\text{ON,OFF}} - (1 - p_{\text{ON,OFF}}) \langle t \rangle_b^{\text{ON,OFF}}}{p_{\text{ON,OFF}}}$$

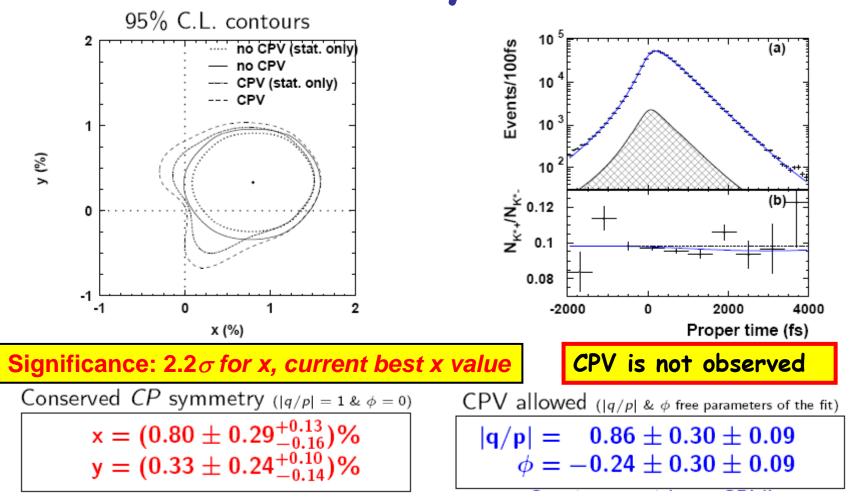
it is consistent with above with above results(y_{CP})

DO mixing in DO->KsPI+PIdecays

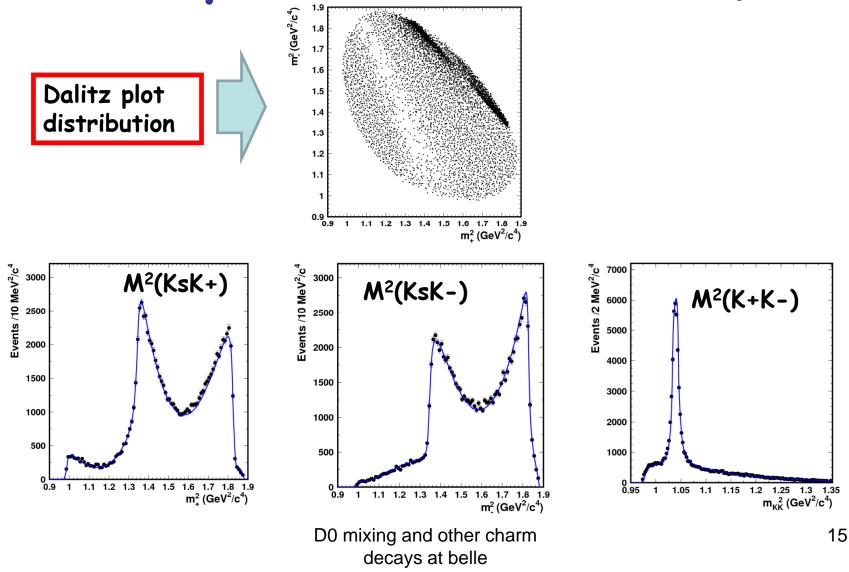
BY measuring the time evolution of Dalitz plot , x, y can be determined separately, D0 decays to final states:

$$\left\langle s \left| H \right| D^{0}(t) \right\rangle = e_{1}(t)A_{1} + e_{2}(t)A_{2} = M$$
$$\left\langle \overline{s} \left| H \right| \overline{D^{0}(t)} \right\rangle = e_{1}(t)\overline{A_{1}} + e_{2}(t)\overline{A_{2}} = \overline{M}$$

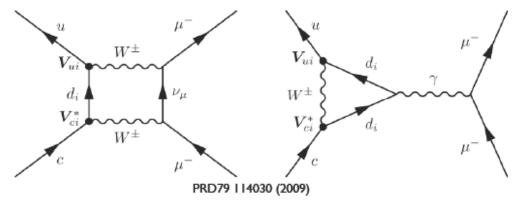
$$D^{0}: \mathcal{A}(m_{-}^{2}, m_{+}^{2}) = \sum_{r} a_{r} e^{i\phi_{r}} \mathcal{A}_{r}(m_{-}^{2}, m_{+}^{2}) + a_{nr} e^{\phi_{n}r}$$
$$\overline{D}^{0}: \bar{\mathcal{A}}(m_{-}^{2}, m_{+}^{2}) = \sum_{r} \bar{a}_{r} e^{i\bar{\phi}_{r}} \bar{\mathcal{A}}_{r}(m_{-}^{2}, m_{+}^{2}) + a_{nr} e^{\phi_{n}r}$$



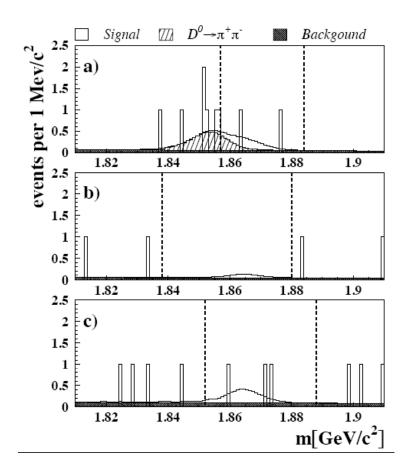
 $D^0 \rightarrow K_{c}^{0} \pi^+ \pi^-$


Therefore, the decay rate of DO is a function of time, it includes x and y, where t is in unit of DO lifetime.

$$|M|^{2} = \left\{ |A_{1}|^{2} e^{-yt} + |A_{2}|^{2} e^{yt} + 2R \left[A_{1}A_{2}^{*}\right] \cos(xt) + 2I \left[A_{1}A_{2}^{*}\right] \sin(xt) \right\} e^{-t},$$
$$|\overline{M}|^{2} = \left\{ |\overline{A_{1}}|^{2} e^{-yt} + |\overline{A_{2}}|^{2} e^{yt} + 2R \left[\overline{A_{1}}\overline{A_{2}^{*}}\right] \cos(xt) + 2I \left[\overline{A_{1}}\overline{A_{2}^{*}}\right] \sin(xt) \right\} e^{-t},$$


DO mixing in DO->KsPI+PIdecays

DO mixing in DO->KsK+Kdecays (will be open soon)


Motivation: FCNC does not appear in SM on tree level (higher order below allowed)

Certain new physics scenarios allows this process: new particle replacing W boson

Model	${\cal B}_{D^0 o \mu^+ \mu^-}$	
Experiment	$\leq 4.3 \times 10^{-7}$ (CDF preliminary)	Except Family Symmetry
Standard Model (SD)	$\sim 10^{-18}$	All NP exceed the SM
Standard Model (LD)	$\sim \text{several} \times 10^{-13}$	
Q = +2/3 Vector-like Singlet	4.3×10^{-11}	prediction
Q = -1/3 Vector-like Singlet	$1 \times 10^{-11} \ (m_S/500 \ {\rm GeV})^2$	Largest data: 659 fb-1
Q = -1/3 Fourth Family	$1 \times 10^{-11} \ (m_S/500 \ {\rm GeV})^2$	Largest auta: 03710-1
Z' Standard Model (LD)	$2.4 \times 10^{-12} / (M_{Z'}(\text{TeV}))^2$	
Family Symmetry	$0.7 imes 10^{-18}$	Belle is most sensitive to
RPV-SUSY	$4.8 imes 10^{-9} \ (300 \ { m GeV}/m_{ ilde{d}_k})^2$	RPV-SUSY scenario

Estimation of background

Combinatorial background

2 D estimation with $~a(1-bm)/\sqrt{q}$

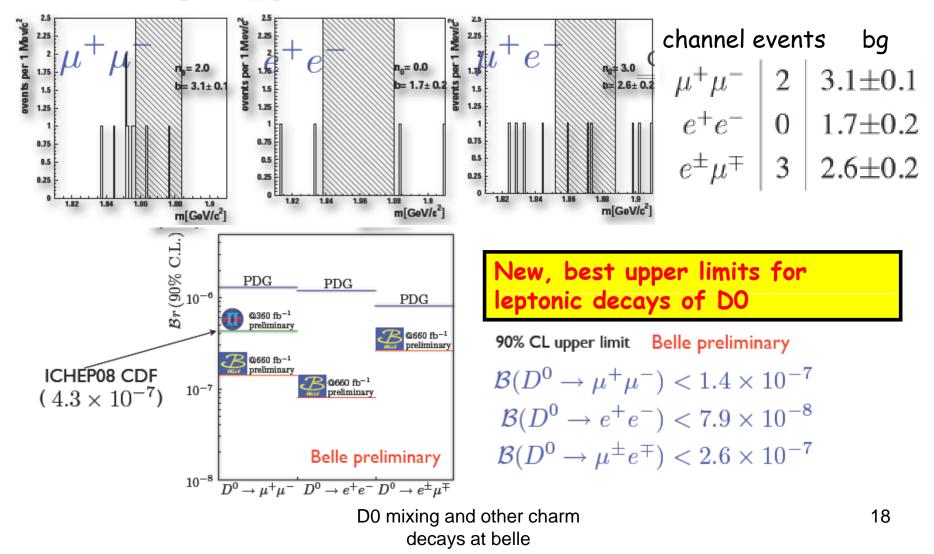
The ratio of combinatorial background in the signal to the number in the side band

channel	p[%]
$\mu^+\mu^-$	1.08
e^+e^-	1.49
$e^{\pm}\mu^{\mp}$	1.43

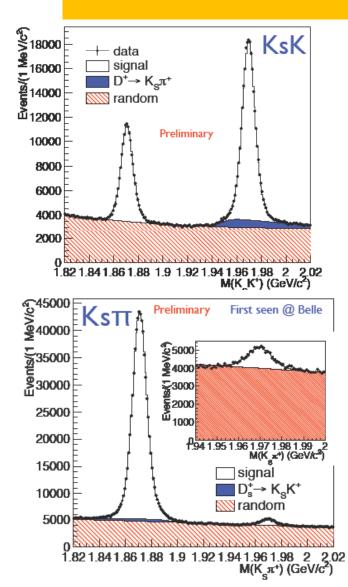
Reflection background from

 $D^0 \to \pi^+ \pi^-$

peak shifted in ${\mathcal M}$ but on peak in q $\pi^+ \to \ell^+$ mis-id measured with $D^0 \to K^- \pi^+$


(Number of reflection in the signal window)

channel	N_{refl}^{DATA}	
$\mu^+\mu^-$	1.81 ± 0.002	
e^+e^-	0.0372 ± 0.0002	
$e^{\pm}\mu^{\mp}$	0.1935 ± 0.0006	


D0 mixing and other charm decays at belle

17

Event counting at the signal window

Study of D_(s)⁺->Ksh+

look for ratios of CS to CF $D^+_{(s)}$ decays Preliminary fit yields Decay modes Yields $D^+ \to K_S K^+$ 100855 ± 561 $D_s^+ \to K_S K^+$ 204093 ± 768 $D^+ \to K_S \pi^+$ 566105 ± 1159 $D_s^+ \to K_S \pi^+$

 16817 ± 448

new best measurements

 $\mathcal{B}(D^+ \to K_S K^+) / \mathcal{B}(D^+ \to K_S \pi^+) = 0.190 \pm 0.001 \pm 0.002$

 $\mathcal{B}(D_s^+ \to K_S \pi^+) / \mathcal{B}(D_s^+ \to K_S K^+) = 0.077 \pm 0.002 \pm 0.002$

Mode	PDG2008	CLEO 2009 (*)
$\mathcal{B}(D^+ \to K_S K^+) / \mathcal{B}(D^+ \to K_S \pi^+)$	0.189±0.016±0.007	0.199±0.010
$\mathcal{B}(D_s^+ \to K_S \pi^+) / \mathcal{B}(D_s^+ \to K_S K^+)$	0.082±0.009±0.002	0.085±0.009

Observation of Ds⁺->K+K+PI-

Motivation:

- 1) not observed yet;
- 2) one can look at the double ratio to test SU(3) flavor symmetry; Lipkin, NPB 115 117 (2003)

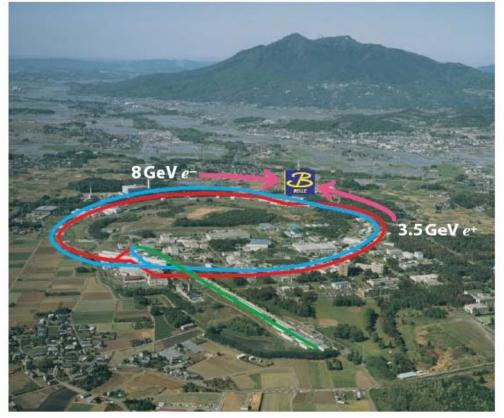
$$\frac{\mathcal{B}(D_s^+ \to K^+ K^+ \pi^-)}{\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)} \frac{\mathcal{B}(D^+ \to K^+ \pi^+ \pi^-)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)} = \tan^8 \theta_C$$


Differences in the phase space cancel in the ratios

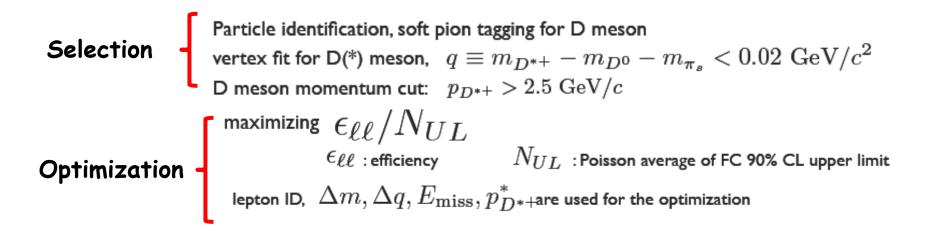
SU(3) breaking effects due to resonant intermediate states in the 3-body violates the equation above

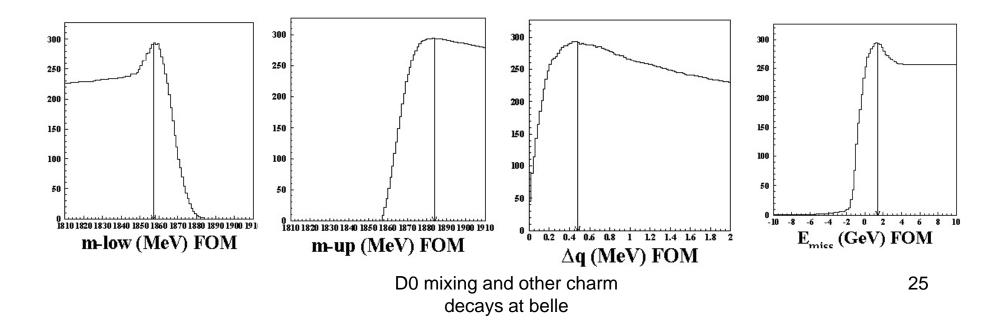
Observation of Ds⁺->K+K+PI-

PRL 102 221802 (2009)


 $\frac{\mathcal{B}(D_s^+ \to K^+ K^+ \pi^-)}{\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)} \frac{\mathcal{B}(D^+ \to K^+ \pi^+ \pi^-)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)} = \underbrace{(1.57 \pm 0.21)}_{\cdot} \tan^8 \theta_C$

Conclusions


- ✓ It seems that there is a clear evidence for no-zero y (D0 mixing parameter)
- ✓ The measurement of x is still a challenge
- ✓ No evidence of CP violation is observed
- ✓ The best limits are achieved for leptonic decays of D0 (preliminary)
- ✓ The most precise branch ratios of
 D_(s)⁺->Ksh+ are obtained (preliminary)
- ✓ The first Observation of DCSD in Ds⁺->K+K+PI-.


Thanks a lot

KEKB consists of a linear injector and two 3km-circumference storage rings.

Backup

