

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

SM Higgs search with H→yy at CMS

Junquan TAO (IHEP/CAS)

Guoming CHEN (IHEP/CAS)

2010年高能物理年会,南昌

April 16-21, 2010

Outline

Introduction & motivation

Sensitivity of Higgs searching with $H \rightarrow \gamma \gamma \otimes CMS$

> Overview of the H $\rightarrow\gamma\gamma$ analysis in CMS PTDR

 \geq Improved analysis @14TeV with MC samples @NLO (σ)

- Improved Cut-based analysis with new selections
- Improved event-optimized analysis related to TMVA.

Ongoing work and near futrue plan with LHC collisions data @ 7TeV

Conclusion

Introduction

LHC @ CERN: CMS (Compact Muon Solenoid), ATLAS (A Toroidal LHC Apparatus), ALICE (A Large Ion Collider Experiment) & LHCb (LHCbeauty).

Main Physics goal: "God particle"-Higgs Boson

LHC for Higgs: —Direct searching: SM Higgs & non-SM Higgs

-Indirect searching: Precision measurements of m_t and m_w

What is the source of mass? What breaks SU(2)_L × U(1)_y ?

Motivation: The SM $H \rightarrow \gamma \gamma$ search

Search for the Higgs Particle

Experiments

MC samples for signal & backgronds

Higgs Mass used in analysis: mH=120GeV,130GeV,140GeV and 150GeV
 The cross section and BR for signal were used: (NLO)

mH	120 GeV	130 GeV	140 GeV	150 GeV
σ (gg fusion)(pb)	36.4	31.6	27.7	24.5
σ (IVB fusion) (pb)	4.5	4.1	3.8	3.6
σ (HW, HZ, ttH) (pb)	3.3	2.6	2.1	1.7
Total (pb)	44.2	38.3	33.6	29.7
BR (H→ ♀ ♀)	2.21x10 ⁻³	2.24x10 ⁻³	1.95x10 ⁻³	1.40x10 ⁻³
Inclusive o x BR (fb)	97.5	86.0	65.5	41.5

Backgouds Cross section with PYTHIA (LO) and "K factor" (LO→NLO)

Process	P _{t hat} (GeV)	σ after preselection (pb)	K-factor
pp→үү (born)	>25	45	1.5
pp→ ɣ ɣ (box)	>25	36	1.2
pp→ γ +jets	>25	600	1.72 (2 prompt) 1.0 (1 prompt+1 fake)
pp→jets	>50	4800	1.0

Overview of H $\rightarrow \gamma\gamma$ analysis process in CMS PTDR

(In CMS Physics Technical Design Report 2) Before 2006, older CMS softerware: OSCAR+ORCA ...; now CMSSW.

"cut-based" analysis:

- 1). Passing the High Level Trigger of photons
- 2). Kinematic cuts on 2 Rec. photons: ET(γ 1)>40GeV Σ ET(γ 2)>35GeV $\langle |\eta|<2.5$
- 3). Photon isolation selection: Track ISO; ECAL ISO; HCAL ISO
- "event-optimized" analysis: Photon ISO ANN analysis & event optimization ANN analysis (preselections ET(γ)>40GeV、 |η|<2.5 and loose ISO)
 </p>

Event optim. ANN 6 inputs

- ✓ Photons ISO: NNiso1, NNiso2
- ✓ Et_{γ1}/M_{γγ}
- ✓ Et_{γ2} /M_{γγ}
- ✓ | η 1- η 2| of γγ
- \checkmark P_L of $\gamma\gamma$ (Higgs candidates)

Drawbacks of the analysis in CMS PTDR

- > No γ/π^0 discrimination (to suppress the reducible backgrounds with fake photon).
- When event optimization analysis, the other information of one event was not considered, such as jets and MET etc., to separate the signal and backgrouds.

Backgroud decision/estmation with sideband was not included.

Didn't give out the selection efficiency in event optimization analysis. The number of events is unknown for signal and backgrounds respectively.

Etc.

Chance for us to participate in the H $\rightarrow \gamma\gamma$ analysis at CMS

γ/π^0 discrimination: unconverted photons in Barrel

Unconverted case in Barrel

PT bins (GeV)	π 0 rejection efficiency for keeping 90% photon efficincy (%) (BDT in Barrel)				
	N12	N12 M3 F6			
20-25	69.6±0.6	51.2±0.6	63.8±0.6	72.5±0.6	
25-35	61.6±0.4	39.4±0.4	57.0±0.4	66.9±0.4	
35-45	50.7±0.5	30.9±0.4	48.5±0.5	60.0±0.5	
45-55	40.0±0.5	26.0±0.4	41.7±0.5	50.9±0.5	
55-65	34.5±0.5	23.9±0.4	34.1±0.5	42.8±0.5	
65-75	29.6±0.5	21.7±0.4	29.8±0.5	37.0±0.5	

Unconverted case in Endcap:

$P_T (\text{GeV})$	保持90%光子效率的 π^0 排斥率(%)
20-25	$64.1 {\pm} 2.0$
25-35	62.1 ± 1.3
35-45	57.1 ± 1.3
45-55	54.4 ± 1.2
55-65	51.8 ± 1.0

γ/π^0 discrimination: Converted photons

Shower shape viriables and converted tracks etc.:

ET range	π 0 rejection for keeping 90% γ efficiency (%)
20-25	31.5
25-35	48.0
35-45	67.3
45-55	74.0
55-65	75.1
65-75	71.5

Improved Cut-based analysis with M_H=120GeV

Event-optimized analysis: Photon ISO

- Information with different cone size around the photon used for inputs.
 - Training signal: Reco. ¥ from gg fusion H (Isolated).
 - Training background: Reco. ¥ from jets sample (Nonisolated)

Results: signal efficiency vs bkg rejection

For keeping 90% signal (ISO photons), ~8% higher bkg (Non-ISO) rejection

Event-optimized analysis: Event Opt.

NNiso for both photons as inputs.

Add 6 new inputs: Jets & MET etc.

Considering preselection efficiency for signal: ~65%, if keeping 50% signal efficiency here, the combined signal eff. will be ~33%.

Much higher bkg rejection eff.: ~16.4%

Event-optimized analysis

Direct cut on the TMVA-BDT output here.
Required NNevt>0.05

> Kinematic cuts on photons: PT(Leading γ)>40.0, PT(Trailing γ)>35.0, $|\eta|<2.5$

>NN($\gamma/\pi 0$) cuts: (NN>NNmin), NNmin is the same as cut-based analysis

mH (GeV)	S _L @ 1fb-1	5 σ Discovery	3 σ evidence	95% CL exclusion
120	1.76	8.0 /fb	2.9 /fb	1.3 /fb
130	1.55	10.4 /fb	3.7 /fb	1.6 /fb
140	1.23	16.4 /fb	5.9 /fb	2.6 /fb
150	0.69	52.0 /fb	18.7 /fb	8.2 /fb

Junquan Tao

Normolized to 1/fb, signal \times 10

Analysis with 6 categories

Different s/b in different categories based on R9 and pseudo-rapidity of photons.

Discovery sensitivity for different Higgs mass

mH (GeV)	5 σ Discovery	3 σ evidence	95% CL exclusion
120	7.8 /fb	2.8 /fb	1.3 /fb
130	10.0 /fb	3.6 /fb	1.6 /fb
140	15.9 /fb	5.7 /fb	2.5 /fb
150	36.8 /fb	13.2 /fb	6.0 /fb

Estimation of background

Error on bkg estimation with "sideband".

✓ Uncertainty of the fit function
 ✓ Statistics error with the events for fitting

> Fitted with *a 3rd order polynomial function*.

➢At 10 fb-1, for 1 whole category, the error from the fit function is ~0.6%; the statistical error is ~0.9%. The total error is estimated to be 1.1%.

For 6 categories, total error: ~2.3%.

Systematic error on the signal

> 20% uncertainties on the signal in total

Sources	Uncertainties
Theory	~15%
Int. Luminosity	~3%
Trigger	~1%
Others	~1%

Event-optimized results with sys. error

With 1.1% systematic error of bkg and 20% uncertainty on signal, the significance:

whole samples as 1 category

mH (GeV)	5 σ Discovery	3 σ evidence	95% CL exclusion
120	12.6 /fb	4.5 /fb	2.0 /fb
130	16.1 /fb	5.8 /fb	2.6 /fb
140	25.9 /fb	9.3 /fb	4.1 /fb
150	80.6 /fb	29.0 /fb	12.8 /fb

With 2.3% systematic error of bkg and 20% uncertainty on signal, the significance:

Analysis with 6 categories

mH (GeV)	5 σ Discovery	3 σ evidence	95% CL exclusion
120	12.3 /fb	4.4 /fb	2.1 /fb
130	15.8 /fb	5.7 /fb	2.6 /fb
140	25.3 /fb	9.1 /fb	4.0 /fb
150	55.6 /fb	20.0 /fb	9.4 /fb

Results when assuming 30% uncertainty on Bkg

Backgrouds generated with PYTHIA (LO)

For the "K-factor" uncertainty of ~20-30% (LO→NLO), we assumed another 30% uncertainty on Bkg here

>The **discovery sensitivities**:

mH (GeV)	5 o Discovery	3 σ evidence	95% CL exclusion
120	15.7 /fb	5.7 /fb	2.5 /fb
130	20.3 /fb	7.3 /fb	3.3 /fb
140	32.1 /fb	11.5 /fb	5.1 /fb

For the insensitivity of the Higgs research with mH=150GeV by the channel $H \rightarrow \gamma \gamma$, the result with 30% uncertainty on Bkg is not shown here.

Significance and sensitivity of Higgs research with the channel $H \rightarrow \gamma \gamma @ CMS$

Ongoing work with collisions @ 7TeV: Photon Calibration

> With LHC 7TeV collisions, 2010 is THE YEAR for calibration activities.

ECAL calibration with $\pi \mathbf{0} \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$ at the startup.

> Cluster of γ candidates based on 3x3 crystals array, if the energy is higher, there will be overlapping between 2 γ candidates

>Try to solve the shower overlapping problem in the higher energy region. The parametric shower shape profile method is being used for such purpose.

In a higher energy region, to keep the precision of photon energy measurement.

Near futrue plan with collisions @ 7TeV: Di-photons in CMS

pb/GeV/c

- σ (Y Y + X) CDF published with 200pb⁻¹ (hepex/0412050)
- Due to higher cross section, CMS will have equivalent statistics with ~10pb⁻¹.
- How to solve the photon purity problem?
- The parametric shower shape profile method as in CDF analysis (unconverted photon case).

"Template method" trying with the outputs of **Neural Network with** $\gamma/\pi 0$ discrmination analysis.

profile method. Also shown are the total systematic uncertainties on these efficiencies, and the measured efficiency of the data as a function of photon P_t .

FIG. 3. Simulated $\tilde{\chi}^2$ distributions for 15 GeV/c photons (solid) and π^0 's (dashed).

Conclusion

> We finished the SM $H \rightarrow \gamma \gamma$ analysis with 14TeV @CMS based on the MC samples @NLO.

For both cut-based analysis and event optimized analysis, with the backgound can be fixed by the sidebands fit, better results can be obtained.

For Higgs mass less than 140 GeV, 5 or discovery result or at least a strong exist evidence of Higgs can be obtained with the data of 20 /fb.

> Expect to **contribute** a lot to the task force of SM $H \rightarrow \gamma \gamma$ analysis @ CMS with the LHC colision data.

Backup

Di-photon invariant mass spectrum after the selection for the cut-based analysis. Events are normalized to an integrated luminosity of 1 fb–1 and the Higgs signal, shown for different masses, is scaled by a factor 10.

Higher order $\gamma\gamma$ Generator Studies

- Interesting from a theoretical point of view because prompt diphoton production is between pure QCD and QED - It's a background to light Higgs searches (and new physics in some BSM models)

- CDF/D0 show that Pythia (LO) can not describe accurately the shapes of $\gamma\gamma$ +X events => need for NLO calculations

27

M_{yy} (GeV)

Applying to other Higgs mass samples

Events/GeV @ 1fb⁻ $H \rightarrow \gamma \gamma M$ = 130GeV (×10) 70 > Applying the TMVA result and the final H→γγ M. =140GeV (×10) $H \rightarrow \gamma \gamma M$ =150GeV (×10) selections to other signal samples with jets p_>50GeV 60 γ +jets (2 prompt γ) mH=130GeV,140GeV and 150GeV 50 γγ box 🚫 γγ born 40 Analysis with CSA07 samples, 30 normolized to 1/fb, signal $\times 10$ 20 10 Selection efficiencies for signal samples 100 110 120 140 160 130 150 170 180 M...(GeV) Selection **Selectio** mH (GeV) events mΗ events Eff. @1fb-1 (GeV) n Eff. @1fb-1 120 gg fusion 22.26% 17.9 130 21.08% 14.9 IVB 14.34% 1.4 16.07% 1.5 ZH,WH,ttH 11.87% 0.9 12.63% 0.7 140 20.79% 11.2 150 18.59% 6.4 16.36% 1.2 15.84% 0.8 12.60% 0.5 12.42% 0.3

 $H \rightarrow \gamma \gamma M_{..} = 120 \text{GeV} (\times 10)$

Sub-process	PTDR	now	tools used now
gg fusion	NLO	NNLO	HggTotal
VBF	NLO	NLO	VV2H
VH	NLO	NLO	V2HV
ttH	LO	LO	HQQ

Pre-analysis

Filter: at least 2 Rec. correctedPhotons with pT Min.=20GeV.

L1 & HLT: Previous studies show ~99% efficiency for L1 and HLT after analysis selection. The inefficiency due to trigger is negligible.

- > Also **pseudo-rapidity cuts** on Photons: $|\eta|$ <2.5
- Primary vertex selection:
- ✓ Using the default object "offlinePrimaryVerticesFromCTFTracks".
- \checkmark For gg fusion with mH=120GeV, the PV rec. efficiency is ~98%.
- ✓ If no PV, using the nominal vertex (0.0, 0.0, 0.0) instead.

Only z position correction as PTDR has the same result as the default P.V. in the invariant mass calculation of 2 photons

Variables as TMVA inputs

NN 12 variables (N-12)

- $V_0 = |S_{2 \times 5Right} S_{2 \times 5Left}|/S_{25}$
- $V_1 = \sigma_{\eta\eta}/0.0004$
- $V_2 = \sigma_{\phi\phi}/0.001$ (假如 $\sigma_{\phi\phi} < 0.001$, 否则 $V_2 = 0.0$)
- $V_3 = S_1/S_9$
- $V_4 = (S_9 S_1)/(S_{25} S_1)$
- $V_5 = S_4/S_{25}$
- $V_6 = |S_{2 \times 5Bottom} S_{2 \times 5Top}|/S_{25}$
- $V_7 = E_{3 \times 2Ration}$
- $V_8 = S_6/S_9$

3 Moments variables (M-3): M_{MAJ}², LAT& PZM

- $V_9 = \lambda_2/\lambda_1$
- $V_{10} = (E_2 + S_1)/S_9$
- $V_{11} = (E_2 + S_1)/S_4$

图 5.5: (a)端盖使用神经网络方法时的示意图。通过连接ECAL端盖簇射中心与对撞点 (0.0,0.0,0.0)的连线,找出与preshower的交点。(b)神经网络中使用到的preshower每 一层11条硅微条(相交点左右±5条硅微条),其大约为2cm宽

- Preshower X-层上11个变量: V₀、V₁、...、V₁₀ = ^{E_X}/_{C_X}。其中i = 0,±1,±2,...,±5,即中间硅微条(X_{imp}所在硅微条),左右±1一直到±5的硅微条。E_i^X为该层上第i根硅微条的能量读出。对于中心及±1的硅微条,C_X = 0.02,对其余硅微条C_X = 0.01。
- Preshower Y-层上11个变量: V₁₁、V₁₂、...、V₂₁ = ^{E_iY}/_{C_Y}。其中i的定义与X-层一样。E^Y_i为 该层上第i根硅微条的能量读出。对于中心及±1的硅微条, C_Y = 0.04, 对其余硅微 条C_Y = 0.02。
- ECAL端盖中有关能量沉积的3个变量: V₂₂ = S₁/C_{EE}、V₂₃ = S₉/C_{EE}、V₂₄ = S₂₅/C_{EE}。 其中S₁、S₉、S₂₅的定义与桶部的一样,分别为最大能量沉积的晶体的能量、中 心晶体周围3 × 3晶体矩阵中的总能量、中心晶体周围5 × 5晶体矩阵中的总能 量。假如S₂₅ < 500GeV,系数C_{EE} = 500GeV;假如500GeV < S₂₅ < 1000GeV, 系数C_{EE} = 1000GeV;假如1000GeV < S₂₅ < 7000GeV,系数C_{EE} = 7000GeV。

Application of $\gamma/\pi 0$ discrimination: Unconverted case

Selection of unconverted case: "N_{trk}^{ConvID}=0" method, "track finding for identification of converted photons"

NN cut value vs SC Et: (ANN results from CMS AN-2008/063)

Junquan Tao

Resuls of $\gamma/\pi 0$ discrimination: Converted case

其他研究组的结果

UCSD (University of California, San Diego) Marco Pieri (convenor)

 可确定本底, CMS Note-2006/112 "cut-based"的结果 (老数据): mH=120GeV,不考虑系统误差

Analysis	5 σ discovery no systematic error
Counting experiment	27.4 /fb
1 category	24.5 /fb
4 categories	21.3 /fb
12 categories	19.3 /fb

 CSA07优化分析结果(2008.12.04的报告, 不能确定 本底): mH=120GeV,不考虑系统误差, L(5 σ)~11fb⁻¹

>Università di Roma "La Sapienza" and INFN Sez.

Roma, Francesco Pandolfi (2008.11.21的报告) CSA07分析结果,**有本底谱**,**不考虑系统误差**时5σ发现所

需要的积分亮度

mH=120GeV	19.3 /fb
mH=130GeV	20.5 /fb
mH=140GeV	28.0 /fb
mH=150GeV	53.1 /fb
	Junquan Tao

Event-optimized analysis: inputs

ightarrow Et_{y1} /M_{yy}, Et_{y2} /M_{yy}, | n 1- n 2| and PL are almost independent of the Higgs mass

36