Non-Abelian Effects on Wake Potential in Quark-gluon Plasma

Jiang Bing-feng

Ref.: Jiang Bing-feng, Li jia-rong, Nucl.Phys.A 832(2010)100

IOPP CCNU

jiangbf@iopp.ccnu.edu.cn

Outline

- Introduction
- Screening potential: a static and a moving charges
- Screening Potential induced by a fast parton→ the Hard Thermal Loop resummation technique
- Conclusion

Introduction

Jet quenching \rightarrow a possible signature for the QGP formation \rightarrow radiative energy loss.

The experimental dihadron correlation function shows a double peak structure in the away side.(PRL95(2005)152301; PRL97 (2006)052301)

Then, another aspects of the in-medium jet physics, wakes(trail effects) induced by jet, become hot topics.

Mach cone, Cherenkov radiation, large angle gluon radiation..... see a review: hep-ph/0701257.

induced current, induced charges, wake potential PLB618(2005)123;PRD74(2006)094002.

Wake potential in the linear response theory

A fast parton \rightarrow a constant velocity and a fixed moving direction, the external(test) charge density

$$\rho_{\rm ext}^a = 2\pi \, Q^a \delta(\omega - \mathbf{v} \cdot \mathbf{k}) \tag{1}$$

The induced color charge density by an external charge

$$\rho_{\text{ind}}^{a}(\omega,k) = \left(\frac{1}{\epsilon_{L}(\omega,k)} - 1\right) \rho_{\text{ext}}^{a}(\omega,k) \quad (2)$$

According to Poisson equation, the waked potential

$$\Phi^{a}(\omega,k) = 4\pi \frac{\rho_{\text{ext}}^{a}(\omega,k)}{k^{2}\epsilon_{L}(\omega,k)}$$
(3)

 ϵ_L is the dielectric function.

$$\Phi^{a}(\mathbf{r}, \mathbf{v}, t) = \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d\omega}{2\pi} \exp\left[i\left(\mathbf{k} \cdot \mathbf{r} - \omega t\right)\right] \cdot \frac{4\pi}{k^{2}\epsilon_{L}(\omega, k)} \cdot 2\pi Q^{a}\delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

The key point $\rightarrow \epsilon_L(\omega = \vec{v} \cdot \vec{k}, k) \rightarrow$ the HTL approximation:

$$\epsilon_L^{htl}(\omega,k) = 1 + \frac{m_D^2}{k^2} \left[1 - \frac{\omega}{2k} \left(\ln \left| \frac{\omega+k}{\omega-k} \right| - i\pi \Theta \left(k^2 - \omega^2 \right) \right) \right],$$

 $v = 0 \rightarrow \omega = 0$ the static case, $\Phi^{a}(r, v, t) = \frac{\mathcal{Q} \exp[-m_{D}r]}{r}$

Yukawa potential

 $v \neq 0$, PLB 618(2005)123, PRD 74(2006)094002.

 $\epsilon_L(\omega = \mathbf{\vec{v}} \cdot \mathbf{\vec{k}}, k) \rightarrow$ the HTL result is incomplete The higher loop contribution \rightarrow neglected.

In the HTL approximation, $\epsilon_L(\omega = \mathbf{v} \cdot \mathbf{k}, \mathbf{k})$ of the QGP is similar to the result of the QED abelian plasma, $m_r \rightarrow m_D$ Except the color factors in \mathcal{M}_D , no more non-Abelian effects are involved in the dielectric function.

With the HTL resummation approach, \rightarrow the longitudinal dielectric function \rightarrow the wakepotential of the moving test charge.

The resummed dielectric function and the wake potential

• In Coulomb gauge

$$\epsilon_L(\omega, k) = 1 - \frac{\Pi_{00}(K)}{k^2}$$

• The gluon self-energy

Fig 2. One-loop gluon self-energy

• In the HTL approximation

$$\Pi_L^{htl}(K) = \Pi_{00}^{htl}(K) = -m_D^2 \left[1 - \frac{\omega}{2k} \ln\left(\frac{\omega+k}{\omega-k}\right) \right],$$
$$\Pi_T^{htl}(K) = \frac{m_D^2}{2} \frac{\omega^2}{k^2} \left[1 - \left(1 - \frac{\omega^2}{k^2}\right) \frac{\omega}{2k} \ln\left(\frac{\omega+k}{\omega-k}\right) \right],$$

In the HTL resummation approximation

 The integrals over loop momentom→"hard" (~T) and "soft"(~gT) momentom. Braaten & Pisarsiki, NPB 337&339, PRL 63&64.

• Results from integral over the hard momentum at high temperature $\Pi^{h}_{\mu\nu}(P) \rightarrow$ the HTL self-energy $\Pi^{htl}_{\mu\nu}(P)$

• In the case of the integrals over soft momentum, effective propagators and effective vertices are involved and the calculation are much complicated.

• Assuming the external gluon line is hard. The soft momentum contribution mainly comes from diagrams

Fig 3. The effective gluon self-energy

 The self-polarization of gluon →no countpart in Abelian plasma →non-Abelian characteristic of the QGP

• The dotted line \rightarrow the effective gluon propagator $D^{*\mu\nu}$ is defined by the Schwinger-Dyson equation in the Coulomb gauge. Its lonaitudinal and transverse components are $D_{00}(K) = \Delta_L(K), \quad \Delta_L(K) = \frac{i}{k^2};$

$$D_{0i}(K) = D_{i0}(K) = 0;$$

$$D_{ij}(K) = \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) \Delta_T(K), \quad \Delta_T(K) = \frac{i}{K^2}.$$

$$\Delta_{L}^{*}(K) = \frac{i}{k^{2} - \Pi_{L}^{htl}(K)}, \qquad \Delta_{T}^{*}(K) = \frac{i}{K^{2} - \Pi_{T}^{htl}(K)}.$$

• According to the effective gluon propagator, the effective gluon self-energy

$$\begin{aligned} \Pi_{\mu\nu}^{*1}(K) &= \frac{1}{2}i \int \frac{d^4P}{(2\pi)^4} \Gamma_{\sigma\mu\rho}(-K-P, K, P) D_{\rho\rho'}^{*}(P) \\ &\times \Gamma_{\rho'\nu\sigma}(-P, -K, P+K) D_{\sigma\sigma'}(P+K) \\ \Pi_{\mu\nu}^{*2}(K) &= \frac{1}{2}i \int \frac{d^4P}{(2\pi)^4} \Gamma_{\mu\nu\rho\sigma}(K, -K, P, -P) D_{\rho\sigma}^{*}(P) \\ \Pi_{\mu\nu}^{*}(K) &= \Pi_{\mu\nu}^{*1}(K) + \Pi_{\mu\nu}^{*2}(K) \\ \Pi_{00}^{*}(K) &= \Pi_{00}^{*1}(K) + \Pi_{00}^{*2}(K) \end{aligned}$$

• The resummed gluon self-energy and dielectric function

 $\Pi_{00}(K) \approx \Pi_{00}^{htl}(K) + \Pi_{00}^{*}(K), \quad \epsilon_L(\omega, k) = 1 - \frac{\Pi_{00}(K)}{k^2}$

• Assuming the fast parton $\rightarrow z$, in the cylindrical coordination

$$\mathbf{k} = (\kappa \cos \phi, \kappa \sin \phi, k_z), \mathbf{r} = (\rho, 0, z)$$

$$\Phi^{a}(\rho, z, t) = \frac{Q^{a}}{\pi v} \int_{0}^{\infty} d\kappa \kappa J_{0}(\kappa \rho) \int_{-\infty}^{\infty} d\omega \frac{1}{k^{2} \Delta(\omega, k)}$$
$$\times \left[\cos \left\{ \omega \left(\frac{z}{v} - t \right) \right\} \cdot \operatorname{Re} \epsilon_{L} + \sin \left\{ \omega \left(\frac{z}{v} - t \right) \right\} \cdot \operatorname{Im} \epsilon_{L} \right].$$

where J_0 is the Bessel function, $k = \sqrt{\kappa^2 + \omega^2/v^2}$ and $\Delta = (\operatorname{Re} \epsilon_L)^2 + (\operatorname{Im} \epsilon_L)^2$

• Focusing on the screening potential parallel to the moving direction of the fast parton, $\mathbf{r} \parallel \mathbf{v}$ and $\rho = 0$

$$\frac{\Phi_{\parallel}^{a}(\mathbf{z},\mathbf{v},t)}{Q^{a}m_{D}} = \frac{1}{\pi} \int_{0}^{\infty} dk \int_{-1}^{1} dx \left\{ \frac{\operatorname{Re} \epsilon_{L}}{\Delta} \cos\left(kx |\mathbf{z} - \mathbf{v}t| m_{D}\right) + \frac{\operatorname{Im} \epsilon_{L}}{\Delta} \sin\left(kx |\mathbf{z} - \mathbf{v}t| m_{D}\right) \right\}$$
$$= \Phi_{1} + \Phi_{2}.$$

Numerical results and discussion

- In numerical calculation, g = 0.1, $N_f = 2$, $C_A = 3$
- For comparision, HTL & HTL resummation

- Screening potential in forward-backward direction is anisotropic.
 - In the forward direction \rightarrow Yukawa-like potential
 - In the backward direction \rightarrow speed-dependent,

v = 0.55c Lennard-Jones-like potential with a negative minimum \rightarrow a short repulsive and a long range attractive inteaction.

 $v = 0.99_{\mathcal{C}} \rightarrow \text{Showing an obvious oscillation}$

For comparision of results \rightarrow HTL and HTL resummation

• Resummation calculation enhances anisotropy of the sceening potential.

- In the forward direction \rightarrow screening reduced in resummation
- In the backward direction \rightarrow the negative mimimum \rightarrow deeper

How to understand these properties ?

$$\frac{\Phi_{\parallel}^{a}(\mathbf{z},\mathbf{v},t)}{Q^{a}m_{D}} = \frac{1}{\pi} \int_{0}^{\infty} dk \int_{-1}^{1} dx \left\{ \frac{\operatorname{Re}\epsilon_{L}}{\Delta} \cos\left(kx|\mathbf{z}-\mathbf{v}t|m_{D}\right) + \frac{\operatorname{Im}\epsilon_{L}}{\Delta} \sin\left(kx|\mathbf{z}-\mathbf{v}t|m_{D}\right) \right\}$$
$$= \Phi_{1} + \Phi_{2}.$$

• The HTL dielectric function

$$\operatorname{Re} \epsilon_{L}^{htl}(\omega, k) = 1 + \frac{m_{D}^{2}}{k^{2}} \left[1 - \frac{\omega}{2k} \ln \left| \frac{\omega + k}{\omega - k} \right| \right],$$
$$\operatorname{Im} \epsilon_{L}^{htl}(\omega, k) = \frac{m_{D}^{2}}{k^{2}} \cdot \frac{\omega}{2k} \pi \Theta \left(k^{2} - \omega^{2} \right).$$

• Symmetric properties about $\, arOmega$

$$\operatorname{Re} \epsilon_{L}^{htl}(\omega, k) = \operatorname{Re} \epsilon_{L}^{htl}(-\omega, k),$$
$$\operatorname{Im} \epsilon_{L}^{htl}(\omega, k) = -\operatorname{Im} \epsilon_{L}^{htl}(-\omega, k).$$

• The antisymmetric property of $\operatorname{Im} \epsilon_L (\omega = kvx, k)$ about (ω) results in the anisotropy of the wake potential

• $v \uparrow \rightarrow \text{Im} \in (\omega = kvx, k) \uparrow \rightarrow$ the absolute value of $\Phi_2 \rightarrow$ anisotropy enhancement of the wake potential

• The wake structures, ie. the oscillatory or the Lennard-Jones potential are also determined by $\operatorname{Im} \epsilon_L (\omega = kvx, k)$

Im $\epsilon_L (\omega = kvx, k)$ influences Φ_1 through Δ . When it is small, its contribution to Φ_1 inappreciable \rightarrow the Lennard - Jones potential. While it is large enough, it changes Φ_1 remarkably \rightarrow oscillatory potential

• The resummation calculation give a correction to the imagiary part of the dielectric function \rightarrow result in the enhancement of the anisotropy of the screening potential.

Jiang Bing-feng& Li Jia-rong, CTP49(2008)1567, Zhang Xiao-fei& Li Jia-rong PRC52(1995)964, Zheng Xiao-ping & Li Jia-rong, PLB 409(1997)45.

Conclusion

 The screening potential of a moving test charge → anisotropy in forward-backward directrion

• The anisotropic behavior, wake structure, ie. the oscillatory potential or the Lennard-Jones potential are attributed to the imaginary part of the dielectric function.

• The HTL resummation calculation → corrective contribution to imaginary part of the dielectric function → enhance anisotropy