# Study of Branching ratio of $\Psi(3770) \rightarrow DDbar$

Hai-bo Li Xiaoshuai Qin Mao-zhi Yang

Phys. Rev. D81,011501(2010)

2010/04/16 -04/19, Nanchang city

## Outline

- \* 1. Theoretical estimation of branching ratio of  $\Psi(3770) \rightarrow$  non-DDbar
- \* 2. Experimental results about Ψ(3770)→non-DDbar
- \* 3. Combining BESII and Belle data to fit branching fraction of  $\Psi(3770)$  to DDbar.

# Theoretical estimation of branching ratio of $\Psi(3770) \rightarrow \text{non-DDbar}$

\* The  $\psi(3770)$  can be viewed as a  $1^{3}D_{1}$ dominated state with a small admixture of  $2^{3}S_{1}$  and expressed as:  $|\psi(3770)\rangle = \cos\theta |1^{3}D_{1}\rangle + \sin\theta |2^{3}S_{1}\rangle$  $|\psi(3686)\rangle = -\sin\theta |1^{3}D_{1}\rangle + \cos\theta |2^{3}S_{1}\rangle$  $\psi(3686)\rangle = -\sin\theta |1^{3}D_{1}\rangle + \cos\theta |2^{3}S_{1}\rangle$  $\theta \sim -12^{\circ}$ 

 $\Gamma(\psi(3770) \to LH) = 467_{+338}^{-187} keV(\pm 50\%)$   $Br(\psi(3770) \to LH) = (2.0^{-0.80})\%(\pm 50\%)$ 

Z.G.He, Y.Fan, and K.T.Chao, Phys.Rev.Lett. 101, 112001(2008)

 $Br(\psi(3770) \rightarrow LH) = (2.0^{-0.80}_{+1.50})\%(\pm 50\%)$ 

Together with the observed hadronic transitions and *E*1 transitions, the non-DDbar decay branching ratio of  $\psi(3770)$  could reach about 5%.

# Experimental results about $\Psi(3770) \rightarrow \text{non-DDbar}$

BESII:  $\sigma(\psi(3770) \rightarrow DD) = 7.179 \pm 0.195 \pm 0.630 nb$ BF( $\psi(3770) \rightarrow non - DD$ ) = 14.5 ± 1.7 ± 5.8% PLB641,145(2006)

Cleo-c:  $\sigma(\psi(3770) \rightarrow DD) = 6.38 \pm 0.08^{+0.41}_{-0.30} nb$  $\sigma(\psi(3770) \rightarrow non - DD) = -0.01 \pm 0.08^{+0.41}_{-0.30} nb$ 

Cleo-c:  $\sigma(\psi(3770) \rightarrow DD) = 6.57 \pm 0.04 \pm 0.10nb$  $\sigma(\psi(3770) \rightarrow non - DD) = -0.21 \pm 0.09^{+0.41}_{-0.30} nb$ 

 $BF(\psi(3770) \rightarrow non - DD) = -3.3 \pm 1.4^{+6.6}_{-4.8}\%$  $BF(\psi(3770) \rightarrow non - DD) < 9\%$  at 90% confidence level

PRL96,092002(2006)

## Both BESII and CLEO-c found only a few channels with total branching fraction < 3% .

#### What we have already known

| ψ(3770) DECAY MODES            | Fraction $(\Gamma_i/\Gamma)$ | Scale factor/<br>Confidence level | р<br>(MeV/c) |
|--------------------------------|------------------------------|-----------------------------------|--------------|
| DD                             | (85.3 ± 3.2 ) %              | 1                                 | 285          |
| $D^0 \overline{D}{}^0$         | (48.7 ± 3.2 ) %              |                                   | 285          |
| $D^{+}D^{-}$                   | (36.1 ±2.8)%                 |                                   | 251          |
| $J/\psi \pi^+\pi^-$            | $(1.93\pm0.28) \times$       | 10-3                              | 560          |
| $J/\psi \pi^0 \pi^0$           | ( 8.0 $\pm$ 3.0 ) $	imes$    | 10-4                              | 564          |
| $J/\psi\eta$                   | (9 ±4 )×                     | 10-4                              | 359          |
| $J/\psi \pi^0$                 | < 2.8 ×                      | $10^{-4}$ CL=90%                  | 603          |
| $\gamma \chi_{c0}$             | ( 7.3 $\pm 0.9$ ) $	imes$    | 10 <sup>-3</sup>                  | -            |
| $\gamma \chi_{c1}$             | ( 2.9 $\pm$ 0.6 ) $	imes$    | $10^{-3}$                         | -            |
| $\gamma \chi_{c2}$             | < 9 ×                        | $10^{-4}$ CL=90%                  | -            |
| e+ e-                          | ( 9.7 $\pm$ 0.7 ) $	imes$    | 10 <sup>-6</sup> S=1.2            | 1886         |
| $\kappa_{S}^{0}\kappa_{L}^{0}$ | < 1.2 ×                      | 10 <sup>-5</sup> CL=90%           | 1820         |
| $2(\pi^+\pi^-)$                | < 1.12 ×                     | 10 <sup>-3</sup> CL=90%           | 1861         |
| $2(\pi^+\pi^-)\pi^0$           | < 1.06 ×                     | 10 <sup>-3</sup> CL=90%           | 1843         |
| $2(\pi^{+}\pi^{-}\pi^{0})$     | < 5.85 %                     | CL=90%                            | 1821         |
| $\omega \pi^+ \pi^-$           | < 6.0 ×                      | 10 <sup>-4</sup> CL=90%           | 1794         |
| $3(\pi^{+}\pi^{-})$            | < 9.1 ×                      | 10 <sup>-3</sup>                  | 1819         |
| $3(\pi^+\pi^-)\pi^0$           | < 1.37 %                     |                                   | 1792         |
| $3(\pi^+\pi^-)2\pi^0$          | < 11.74 %                    | CL=90%                            | 1759         |
| $\eta \pi^+ \pi^-$             | < 1.24 ×                     | 10 <sup>-3</sup> CL=90%           | 1836         |
| $\pi^{+}\pi^{-}2\pi^{0}$       | < 8.9 ×                      | 10 <sup>-3</sup> CL=90%           | 1862         |

Part of branching ratio results from PDG

#### **About non-DDbar decays**

| ψ(3770) DECAY MODES    | Fraction $(\Gamma_i/\Gamma)$   | Scale factor/<br>Confidence level | р<br>(MeV/c) |
|------------------------|--------------------------------|-----------------------------------|--------------|
| $D\overline{D}$        | (85.3 ±3.2 )%                  |                                   | 285          |
| $D^0 \overline{D}{}^0$ | (48.7 ±3.2)%                   |                                   | 285          |
| $D^{+}D^{-}$           | (36.1 ±2.8)%                   |                                   | 251          |
| $J/\psi \pi^+ \pi^-$   | $(1.93\pm0.28) \times 10^{-1}$ | <sub>L0</sub> —3                  | 560          |
| $J/\psi \pi^0 \pi^0$   | ( 8.0 $\pm$ 3.0 ) $	imes$ 1    | L0 <sup>-4</sup>                  | 564          |
| $J/\psi \eta$          | (9 ±4 )×1                      | L0 <sup>-4</sup>                  | 359          |
| $\gamma \chi_{c0}$     | ( 7.3 $\pm 0.9$ ) $	imes$ 1    | 10 <sup>-3</sup>                  | -            |
| $\gamma \chi_{c1}$     | ( 2.9 $\pm$ 0.6 ) $	imes$ 1    | 10 <sup>-3</sup>                  | -            |
| $\phi\eta$             | ( 3.1 $\pm 0.7$ ) $	imes$ :    | 10 <sup>-4</sup>                  | 1703         |

So, are there **abundance** non-DDbar decay channels not found yet ? Or , we might misunderstand the branching ratio of non-DDbar decay .

## Combining BESII and Belle data to fit branching fraction of $\Psi(3770)$ to DDbar.

#### Motivation:

BESII:  $\sigma(\psi(3770) \rightarrow DD) = 7.179 \pm 0.195 \pm 0.630 nb$ BF( $\psi(3770) \rightarrow non - DD$ ) = 14.5 ± 1.7 ± 5.8%

PLB641,145(2006)

Cleo-c:  $BF(\psi(3770) \rightarrow non - DD) = -3.3 \pm 1.4^{+6.6}_{-4.8}\%$  arXiv:1004,1358  $BF(\psi(3770) \rightarrow non - DD) < 9\%$  at 90% confidence level Both BESII and CLEO-c found only a few channels with total branching fraction less than 3%.

- \* Consider the continuum distribution from  $e^+e^- \rightarrow \gamma^* \rightarrow D\overline{D}$
- Interference of charmonium states need to be considered.

#### **Continuum term**



#### Data Set

- \* 1) Cross-sections at 14 energy points between 3.73 and 3.80 GeV from BESII data with total luminosity of about 15 pb<sup>-1</sup>
  - \* M. Ablikim, et al., BES Collaboration, PLB 668(2008) 263-267.
  - \* Introduce ISR correction from reference: M. Ablikim, et al., BES Collaboration, PLB 603(2004) 130-137.
- \* 2) Cross-sections at 27 energy points between 3.81 and 4.33GeV from Belle data with integrated luminosity of 673 fb<sup>-1</sup> (ISR).

\* Pakhlova et al. PR D77(2008)011103 (Belle)

#### **Data Set**



- Total data set: 41 data points.
- 14 data points from BESII, 27 data points from Belle

## About G(3900)

#### First put forward in Couplechannel model

E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D **21, 203 (1980).** 

\* Observed by BABAR and Belle Collaboration named G(3900)  $f|P + c_1W_1e^{i\phi_1} + c_2\sqrt{G}e^{i\phi_2} + \ldots + c_nW_ne^{i\phi_n}|^2$ + (1 - f)B,

 $m(G(3900)) = (3943 \pm 17_{\text{stat}} \pm 12_{\text{syst}}) \text{ MeV}/c^2,$ 

 $\sigma(G(3900)) = (52 \pm 8_{\text{stat}} \pm 7_{\text{syst}}) \text{ MeV}/c^2$ ,



#### **Formula for cross section**

$$\begin{aligned} \sigma(e^+e^- \to D\overline{D}) &= \frac{\pi}{3} \frac{(s - 4m_{D^0}^2)^{3/2} + (s - 4m_{D^+}^2)^{3/2}}{s^{5/2}} \alpha^2 \\ \times \left| -F_{D\overline{D}}(s) + \sum_i \frac{g_{\psi_i D\overline{D}} Q_c f_{\psi_i} m_{\psi_i}}{s - m_{\psi_i}^2 + im_{\psi_i} \Gamma_i} e^{i\phi} \right|^2 & -F_{D\overline{D}}(s) = \frac{F_0 m_{\psi(3770)}^2}{s - a} \\ -F_{D\overline{D}}(s) &= \frac{4\pi}{3} \frac{Q_c^2 \alpha^2 f_{\psi_i}^2}{m_{\psi_i}} \\ BR(\psi_i \to D^0 \overline{D^0}, D^+ D^-) &= \frac{g_{\psi_i D\overline{D}}^2 (m_{\psi_i}^2 - 4m_D^2)^{3/2}}{48\pi\Gamma_i m_{\psi_i}^2} \\ \sigma(e^+e^- \to D\overline{D}) &= \frac{\pi}{3} \frac{(s - 4m_{D^0}^2)^{3/2} + (s - 4m_{D^+}^2)^{3/2}}{s^{5/2}} \alpha^2 \\ \times \left| -F_{D\overline{D}}(s) + \sum_i \frac{1}{\alpha} \frac{1}{\sqrt{(m_{\psi_i}^2 - 4m_{D^0}^2)^{3/2} + (m_{\psi_i}^2 - 4m_{D^+}^2)^{3/2}}} \frac{6\sqrt{\Gamma_{eei}Br\Gamma_{\psi_i}} m_{\psi_i}^{5/2}}{s - m_{\psi_i}^2 + im_{\psi_i}\Gamma_{\psi_i}} \right|^2 \end{aligned}$$

#### Formula for cross section

12

$$\begin{split} \sigma(e^+e^- \to D\overline{D}) &= \frac{\pi}{3} \frac{(s - 4m_{D^0}^2)^{3/2} + (s - 4m_{D^+}^2)^{3/2}}{s^{5/2}} \alpha^2 \\ & \left| \frac{c_0}{s - m_{\psi(3686)}^2 + im_{\psi(3686)} \Gamma_{\psi(3686)}} \right. \\ &+ \frac{1}{\alpha} \frac{1}{\sqrt{(m_{\psi}^2 - 4m_{D^0}^2)^{3/2} + (m_{\psi}^2 - 4m_{D^+}^2)^{3/2}}} \frac{6\sqrt{\Gamma_{ee}Br}\Gamma_{\psi^*}}{s - m_{\psi}^2 + im_{\psi}} \Gamma_{\psi^*}} e^{i\phi} \\ &\times + c_1 \sqrt{\frac{1}{\sqrt{2\pi}\sigma_{G(3900)}}} e^{-\frac{(\sqrt{s} - M_{G(3900)})^2}{\sigma_{G(3900)}^2}} e^{i\phi} \\ &+ \frac{1}{\alpha} \frac{1}{\sqrt{(m_{\psi(4040)}^2 - 4m_{D^0}^2)^{3/2} + (m_{\psi(4040)}^2 - 4m_{D^+}^2)^{3/2}}} \frac{6\sqrt{\Gamma_{ee}Br_2}\Gamma_{\psi(4040)}}{s - m_{\psi(4040)}^2 + im_{\psi(4040)}} e^{i\phi_2} \\ &+ \frac{1}{\alpha} \frac{1}{\sqrt{(m_{\psi(4160)}^2 - 4m_{D^0}^2)^{3/2} + (m_{\psi(4160)}^2 - 4m_{D^+}^2)^{3/2}}} \frac{6\sqrt{\Gamma_{ee}Br_3}\Gamma_{\psi(4160)}} m_{\psi(4160)}^{5/2}}{s - m_{\psi(4160)}^2 + im_{\psi(4160)}} e^{i\phi_2} \\ &+ \frac{1}{\alpha} \frac{1}{\sqrt{(m_{\psi(4160)}^2 - 4m_{D^0}^2)^{3/2} + (m_{\psi(4160)}^2 - 4m_{D^+}^2)^{3/2}}} \frac{6\sqrt{\Gamma_{ee}Br_3}\Gamma_{\psi(4160)}} m_{\psi(4160)}^{5/2}}{s - m_{\psi(4160)}^2 + im_{\psi(4160)}} e^{i\phi_2} \\ &+ \frac{1}{\alpha} \frac{1}{\sqrt{(m_{\psi(4160)}^2 - 4m_{D^0}^2)^{3/2} + (m_{\psi(4160)}^2 - 4m_{D^+}^2)^{3/2}}} \frac{6\sqrt{\Gamma_{ee}Br_3}\Gamma_{\psi(4160)}} m_{\psi(4160)}^{5/2}}{s - m_{\psi(4160)}^2 + im_{\psi(4160)}} e^{i\phi_2} \\ &+ \frac{1}{\alpha} \frac{1}{\sqrt{(m_{\psi(4160)}^2 - 4m_{D^0}^2)^{3/2} + (m_{\psi(4160)}^2 - 4m_{D^+}^2)^{3/2}}}} \frac{6\sqrt{\Gamma_{ee}Br_3}\Gamma_{\psi(4160)}} m_{\psi(4160)}^{5/2}}{s - m_{\psi(4160)}^2 + im_{\psi(4160)}} \frac{1}{2} \frac{1$$

### Fit method

- Least  $\chi^2$  fitting method
  - \* Fix  $\Psi(2S)$  's width, mass to PDG value
  - \* Fix  $\Psi(4040)$ 's width, mass to PDG value
  - \* Fix  $\Psi(4160)$ 's width, mass to PDG value
  - \* Fix G(3900)'s width, mass to 3.9GeV and 52MeV suggested by *BABAR*'s fitting result.
    - \* B.Aubert, et al. PRD76,111105(BABAR)
    - \* E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D 21, 203 (1980).
  - \* For  $\Psi(3770)$ 's total width, 2 methods:
    - \* 1) constant width
    - \* 2) s-dependent width

#### s-dependent total width of $\Psi(3770)$

$$\begin{split} &\Gamma_{T}(s) = \Gamma_{D^{0}}\overline{D^{0}}(s) + \Gamma_{D^{+}D^{-}}(s) + \Gamma_{non-D\overline{D}}(s) \\ &\Gamma_{D^{0}\overline{D^{0}}}(s) = \Gamma_{0}\theta(E_{cm} - 2M_{D^{0}})\frac{(p_{D^{0}})^{3}}{(p_{D^{0}}^{0})^{3}}\frac{1 + (rp_{D^{0}}^{0})^{2}}{1 + (rp_{D^{0}})^{2}}B_{00} \\ &\Gamma_{D^{+}D^{-}}(s) = \Gamma_{0}\theta(E_{cm} - 2M_{D^{+}})\frac{(p_{D^{+}})^{3}}{(p_{D^{+}}^{0})^{3}}\frac{1 + (rp_{D^{+}}^{0})^{2}}{1 + (rp_{D^{+}})^{2}}B_{+-} \\ &\Gamma_{non-D\overline{D}}(s) = \Gamma_{0}(1 - B_{00} - B_{+-}) \end{split}$$

Fix  $B_{00}/B_{+}$  ratio to be 0.481/0.361 ~ 1.33 according to PDG value

M. Ablikim, *et al.*, BES Collaboration, PLB 641,145(2006)

#### **Best fit result**



 $\chi^2$ /dof = 1.06

#### **Best fit results**

|                                             | Variables                         | Constant width   |                   | s-dependent        |  |
|---------------------------------------------|-----------------------------------|------------------|-------------------|--------------------|--|
|                                             |                                   | Solution 1       | Solution 2        |                    |  |
|                                             | $m_{\psi(3770)} ({\rm MeV})$      | $3776 \pm 1$     | $3776 \pm 1$      | $3780{\pm}1$       |  |
|                                             | $\Gamma_{\psi(3770)}(\text{MeV})$ | $28.5 \pm 2.1$   | $28.7 \pm 2.1$    | $29.7 \pm 1.3$     |  |
| $Br(\psi(3770) \rightarrow D\underline{D})$ | $\mathcal{BR}_1$ (%)              | $97.2 \pm 8.9$   | $101.1 \pm 9.0$   | $98.3 \pm 10.4$    |  |
| $Br(\psi(4040) \rightarrow D\underline{D})$ | $\mathcal{BR}_2~(\%)$             | $25.3 \pm 4.5$   | $34.7{\pm}4.8$    | $25.0{\pm}4.6$     |  |
| $Br(\psi(4160) \rightarrow DD)$             | $\mathcal{BR}_3$ (%)              | $2.8 \pm 1.8$    | $40.4 \pm 3.8$    | $2.9{\pm}1.7$      |  |
|                                             | $c_0$                             | $8.75 \pm 0.71$  | $8.67 {\pm} 0.67$ | $10.77 {\pm} 0.69$ |  |
|                                             | $c_1$                             | $1.00{\pm}0.35$  | $0.82 {\pm} 0.29$ | $1.17 {\pm} 0.34$  |  |
|                                             | $\phi(\mathrm{rad.})$             | $-2.63 \pm 0.09$ | $-2.56 \pm 0.09$  | $-2.49 \pm 0.08$   |  |
|                                             | $\phi_1(\mathrm{rad.})$           | $-1.89 \pm 0.33$ | $-1.55 \pm 0.36$  | $-2.32 \pm 0.30$   |  |
|                                             | $\phi_2(\mathrm{rad.})$           | $-2.14 \pm 0.14$ | $-1.62 \pm 0.11$  | $-2.56 \pm 0.21$   |  |
|                                             | $\phi_3(\mathrm{rad.})$           | $1.91 \pm 0.44$  | $-3.03 \pm 0.1$   | $1.44{\pm}0.48$    |  |

Statistical error Only!

The interference between structures and continuum term tends to be destructive

#### Why large contribution from $\Psi(2S)$

- \* The coupling of resonance with virtual photon:
  - ∗ Leptonic decay width → decay constant

$$\begin{split} \Gamma_{e^+e^-\psi(2S)} &= 2.36 \pm 0.04 keV \quad \Gamma_{e^+e^-\psi(3770)} = 0.265 \pm 0.018 keV \\ f_{\psi(2S)} &= 297 MeV \qquad f_{\psi(3770)} = 100 MeV \end{split}$$

- \* The coupling of resonance with DDbar  $Br(\psi(3770) \rightarrow D\overline{D})$   $c_0 = g_{\psi(2S)D\overline{D}}Q_c f_{\psi(2S)}m_{\psi(2S)}$  $g_{\psi(3770)D\overline{D}} = 12.8$   $g_{\psi(2S)D\overline{D}} = 12.0$
- \* Conclusion: the large coupling of  $\Psi(2S)$  with the virtual photon.

### **About multiple solutions**

- As the interference has been introduced, multiple solutions should exist.
- At least 8 solutions have been found, but many with Br( 𝒫(3770) → DDbar) less than 70%. So they are abandoned as unphysical solutions.

### Conclusion

\* Our result concludes that taking into account the interference between  $\Psi(3770)$ ,  $\Psi(2S)$  and some higher structures is

a good suggestion to study the DDbar branching fraction and the puzzle about non-DDbar branching fraction.

More data sample is suggested for BESIII.

### Conclusion

\* Our result concludes that taking into account the interference between  $\Psi(3770)$ ,  $\Psi(2S)$  and some higher structures is

a good suggestion to study the DDbar branching fraction and the puzzle about non-DDbar branching fraction.

More data sample is suggested for BESIII.



## Backup



#### Most recently updated result from Cleo-c

 $\sigma(e^+e^- \to \psi(3770) \to hadrons) = 6.36 \pm 0.08^{+0.41}_{-0.30} nb$   $\sigma(\psi(3770) \to D\overline{D}) = 6.57 \pm 0.04 \pm 0.10 nb$   $\sigma(\psi(3770) \to non - D\overline{D}) = -0.21 \pm 0.09^{+0.41}_{-0.30} nb$   $BF(\psi(3770) \to non - D\overline{D}) < -3.3 \pm 1.4^{+6.6}_{-4.8}\%$  $BF(\psi(3770) \to non - D\overline{D}) < 9\%$  at 90% confidence level

#### Anomalous line shape of $\Psi(3770)$

#### BES Data (33 pb-1)

#### KEDR Data 2.1 pb-1



### **Part of References**

- M. Ablikim, et al., BES Collaboration, PLB 668(2008) 263-267.
- M. Ablikim, et al., BES Collaboration, PLB 603(2004) 130-137.
- \* Pakhlova et al. PR D77(2008)011103 (Belle)
- \* M.Z.Yang, Mod.Phys.Lett. A 23,3113(2008)
- Z.G.He, Y.Fan, and K.T.Chao, Phys.Rev.Lett. 101, 112001(2008)
- \* B.Aubert, et al. PRD76,111105(BABAR)
- \* E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D 21, 203 (1980).