The $8^{\text {th }}$ national delegate conference for the members of HEP and the annual academic conference

Phys.Lett.B 684 (2010) 137-140

## CP violation in $D \rightarrow V V$ decay

## Xian-Wei Kang

Hai-Bo Li, Gong-Ru Lu

2010/04/16-04/21, Nanchang city

## The Menu

- Prologue
- Triple-product terms $\Leftrightarrow$ T odd signals
- CP violating observables
- Potential at BES-III and super taucharm


## Experimental Status of CP in D meson

## http://www.slac.stanford.edu/xorg/hfag/

## CLEO hep-ex/0102006

BARBAR Phys. Rev. D 78,051002(R) (2008)
$\mathrm{A}_{C P}\left(K^{+} K^{-}\right)=(+0.05 \pm 2.18 \pm 0.84) \%$
$\mathrm{A}_{C P}\left(\pi^{+} \pi^{-}\right)=(+2.0 \pm 3.2 \pm 0.8) \%$
$\mathrm{A}_{C P}\left(K_{S}^{0} \pi^{0}\right)=(+0.1 \pm 1.3) \%$
$\mathrm{A}_{C P}\left(\pi^{0} \pi^{0}\right)=(+0.1 \pm 4.8) \%$
$\mathrm{A}_{C P}\left(K_{S}^{0} K_{S}^{0}\right)=(-23 \pm 19) \%$
We find no evidence of CP asymmetry in five different two-body decay modes of neutral D to pairs of light pseudo-scalar mesons.

$$
\begin{aligned}
& A_{C P}\left(\pi^{+} \pi^{-} \pi^{0}\right)=(-0.31 \pm 0.41 \pm 0.17) \% \\
& A_{C P}\left(K^{+} K^{-} \pi^{0}\right)=(1.0 \pm 1.67 \pm 0.25) \%
\end{aligned}
$$

We find no evidence of CP violation and hence no conflict with SM

E791 collaboration, Phys.Lett.B 403 (1997) 377

$$
\begin{aligned}
& A_{C P}(\phi \pi)=-0.028 \pm 0.036 \\
& A_{C P}\left(K^{*}(892) K\right)=-0.010 \pm 0.050
\end{aligned}
$$

## Poor data for $\mathrm{D} \rightarrow \mathrm{V}_{1} \mathrm{~V}_{2}$ in PDG

$$
\begin{aligned}
& \text { D0 decay } \\
& \bar{K}^{*}(892)^{0} \rho^{0} \\
& \bar{K}^{*}(892)^{0} \rho^{0} \text { transverse } \\
& \bar{K}^{*}(892)^{0} \rho^{0} S \text {-wave } \\
& \bar{K}^{*}(892)^{0} \rho^{0} S \text {-wave long. } \\
& \bar{K}^{*}(892)^{0} \rho^{0} P \text {-wave } \\
& \bar{K}^{*}(892)^{0} \rho^{0} D \text {-wave } \\
& K^{*}(892)^{-} \rho^{+} \\
& K^{*}(892)^{-} \rho^{+} \text {longitudinal } \\
& K^{*}(892)^{-} \rho^{+} \text {transverse } \\
& K^{*}(892)^{-} \rho^{+} P \text {-wave } \\
& \bar{K}^{*}(892)^{0} \rho^{+} \text {total } \\
& \bar{K}^{*}(892)^{0} \rho^{+} S \text {-wave } \\
& \bar{K}^{*}(892)^{0}{ }^{+}{ }^{+} P \text {-wave } \\
& \bar{K}^{*}(892)^{0} \rho^{+} D \text {-wave } \\
& \bar{K}^{*}(892)^{0} \rho^{+} D \text {-wave longitu- } \\
& \text { dinal } \\
& K^{*}(892)^{+} \bar{K}^{*}(892)^{0} \\
& \text { [ss] ( } 1.8 \pm 1.4) \% \\
& \text { [ss] ( } 1.4 \pm 1.5 \text { ) \% } \\
& <1 \times 10^{-3} \quad \mathrm{CL}=90 \% \\
& \left(\begin{array}{ll}
8 & \pm 7
\end{array}\right) \times 10^{-3} \\
& <7 \times 10^{-3} \quad \mathrm{CL}=90 \% \\
& \text { ( } 2.6 \pm 1.1 \text { ) \% }
\end{aligned}
$$

CP violation in the charm sector is tiny in SM, any significant CP violating signals will be evidence of $N P$.

Past work on CP in D meson in theoretical view:

$$
\text { Z.z.Xing,Phys.Rev.D } 55 \text {, } 196 \text { (1997) ... }
$$


by exploiting quantum correlation in
J.Charles, S.Descotes-Genon, X.W.Kang, H.B.Li, G.R.Lu, Phys.Rev.D81, 054032 (2010)
$D^{0} \bar{D}^{0}$ pair
$D^{0} \bar{D}^{0} \rightarrow\left(V_{1} V_{2}\right)\left(V_{3} V_{4}\right)$
$(0, \perp)(\|, \perp)$ are allowed helicity combinations.

Can we probe the $C P$ violation in D meson without the quantum correlation?

Among the various kinds of $D$ decay modes, $D \rightarrow V V$ and subsequently decaying to two pseudoscalars for each vector meson is a particularly interesting one in the perspect of the copious kinematics of final state interaction (FSI)

## IMPORTANT:

We may construct the CP violating observables through the angular distribution.
G.Kramer et al,

Phys.Rev.D 45 (1992) 193.
Phys.Rev.D 46 (1992) 3197.
Phys.Lett.B 279 (1992) 181.

The idea of T odd "triple product correlation":
G.Valencia, Phys.Rev.D 39 (1989) 3339.
A.Datta and D.London, Int.J.Mod.A 19 (2004) 2505.

## Under T, P, C transformation

| Physical <br> quantity | T | P | C |
| :---: | :---: | :---: | :---: |
| r | r | -r | r |
| t | -t | t | t |
| P | -P | -P | P |
| L | -L | L | L |
| S | -S | S | S |
| $\mathrm{S} \cdot \mathrm{P}$ | $\mathrm{S} \cdot \mathrm{P}$ | $-\mathrm{S} \cdot \mathrm{P}$ | $\mathrm{S} \cdot \mathrm{P}$ |
| Todd |  |  |  |
| $s \cdot\left(p_{1} \times p_{2}\right)$ | $-s \cdot\left(p_{1} \times p_{2}\right)$ | $s \cdot\left(p_{1} \times p_{2}\right)$ | $s \cdot\left(p_{1} \times p_{2}\right)$ |

Let us consider the process


The most general invariant amplitude can be expressed as:

$$
p_{\alpha} \phi^{\alpha}(m)=0
$$

$$
\begin{aligned}
M & \equiv \mathrm{as}+\mathrm{bd}+\mathrm{icp} \\
& =\mathrm{a} \varepsilon_{1}^{*} \cdot \varepsilon_{2}^{*}+\frac{\mathrm{b}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}\left(\mathrm{p} \cdot \varepsilon_{1}^{*}\right)\left(\mathrm{p} \cdot \varepsilon_{2}^{*}\right)+\mathrm{i} \frac{\mathrm{c}}{\mathrm{~m}_{1} \mathrm{~m}_{2}} \varepsilon^{\varepsilon \beta \beta \gamma \delta} \varepsilon_{1 \alpha}^{*} \varepsilon_{2 \beta}^{*} \mathrm{k}_{\mathrm{p}} \mathrm{p}_{\delta}
\end{aligned}
$$

analyzing Lorentz structer

The coefficients $a, b$ and $c$ are generally complex and can receive various contributions with different phase.

The parameterization of the coefficients:

$$
a_{j}, b_{j}, c_{j}
$$

the modular of the corresponding complex quantity.

$$
\begin{aligned}
& a=\sum_{j} a_{j} e^{i \delta_{\mathrm{sj}}} e^{i \phi_{\mathrm{sj}}} \\
& b=\sum_{j} b_{j} e^{i \delta_{\mathrm{dj}}} e^{i \phi_{\mathrm{dj}}} \\
& c=\sum_{j} c_{j} e^{i \delta_{\mathrm{pj}}} e^{i \phi_{\mathrm{pj}}}
\end{aligned}
$$

$$
\delta \Longleftrightarrow \text { strong phase }
$$

note: the weak phase $\phi$ is the necessary condition for occuring of CP violation on the basis of CKM mechanism .

Square the matrix element:

$$
\begin{aligned}
|\mathcal{M}|^{2}= & |a|^{2}\left|\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right|^{2}+\frac{|b|^{2}}{m_{1}^{2} m_{2}^{2}}\left|\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right)\right|^{2} \\
& +\frac{|c|^{2}}{m_{1}^{2} m_{2}^{2}}\left|\epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta}\right|^{2} \\
& +2 \frac{\operatorname{Re}\left(a b^{*}\right)}{m_{1} m_{2}}\left(\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right)\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right) \\
& +2 \frac{\operatorname{Im}\left(a c^{*}\right)}{m_{1} m_{2}}\left(\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right) \epsilon^{\alpha \beta \gamma \delta \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta} \\
& +2 \frac{\operatorname{Im}\left(b c^{*}\right)}{m_{1}^{2} m_{2}^{2}}\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right) \epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta}
\end{aligned}
$$

T odd triple-product term
From the rest frame, $\mathrm{p}_{\delta}=(\mathrm{E}, 0,0,0)$
it becomes $\varepsilon^{\alpha \beta \gamma \delta} \varepsilon_{1 \alpha}^{*} \varepsilon_{2 \beta}^{*} \mathrm{k}_{\gamma}=\left(\vec{\varepsilon}_{1}^{*} \times \vec{\varepsilon}_{2}^{*}\right) \cdot \overrightarrow{\mathrm{k}}$

Define the asymmetry $\mathcal{A}_{\mathcal{T}}=\frac{N\left(\vec{k} \cdot \overrightarrow{\epsilon_{1}^{*}} \times \overrightarrow{\epsilon_{2}^{*}}>0\right)-N\left(\vec{k} \cdot \overrightarrow{\epsilon_{1}^{*}} \times \overrightarrow{\epsilon_{2}^{*}}<0\right)}{N_{\text {total }}}$,
Equivalently one defines,

$$
\mathcal{A}_{\mathcal{T}}=\frac{\Gamma\left(\vec{k} \cdot \vec{\epsilon}_{1}^{*} \times \vec{\epsilon}_{2}^{*}>0\right)-\Gamma\left(\vec{k} \cdot \vec{\epsilon}_{1}^{*} \times \vec{\epsilon}_{2}^{*}<0\right)}{\Gamma\left(\vec{k} \cdot \vec{\epsilon}_{1}^{*} \times \vec{\epsilon}_{2}^{*}>0\right)+\Gamma\left(\vec{k} \cdot \vec{\epsilon}_{1}^{*} \times \vec{\epsilon}_{2}^{*}>0\right.}
$$

Triple product correlation arises from the interference term and will be present if $\operatorname{Im}\left(a c^{*}\right)$ (or $\operatorname{Im}\left(b c^{*}\right)$ ) is nonzero.


Note: the strong phase can also produce nonzero even the weak phase are zero.

A nonzero triple correlation does not necessarily imply CP violation, since FSI can fack it. Comparing a TP for CP conjugate transitions allows to distinguish the genuine CPV

For conjugate channel

$$
\mathrm{p}^{\alpha} \rightarrow \overline{\mathrm{p}}^{\alpha}=\left(\mathrm{p}^{0},-\overrightarrow{\mathrm{p}}\right)
$$

$$
\overline{\mathrm{D}}\left(\mathrm{p}^{\prime}\right) \rightarrow \overline{\mathrm{V}}_{1}\left(\mathrm{k}_{1}^{\prime}, \varepsilon_{2}^{\prime}\right) \overline{\mathrm{V}}_{2}\left(\mathrm{k}_{2}^{\prime}, \varepsilon_{2}^{\prime}\right)
$$

the amplitude reads,
Let $a, b, c, d$ be any fourvector, using shorthand notations

$$
\bar{M}=\overline{\varepsilon_{1}^{*}} \cdot \varepsilon_{2}^{* *}+\frac{\overline{\mathrm{b}}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}\left(\mathrm{p} \cdot \varepsilon_{1}^{*}\right)\left(\mathrm{p} \cdot \varepsilon_{2}^{*}\right)-\mathrm{i} \frac{\overline{\mathrm{c}}}{\mathrm{~m}_{1} \mathrm{~m}_{2}} \varepsilon^{\alpha \beta \gamma \gamma \delta} \varepsilon_{1 \alpha}^{* *} \varepsilon_{2 \beta}^{*} \mathrm{k}_{\gamma} \mathrm{p}_{\delta}
$$

$$
\begin{aligned}
& (a \cdot b)=g_{\alpha \beta} a^{\alpha} b^{\beta}, \\
& (a b c d)=\varepsilon_{\alpha \beta \gamma \gamma} a^{\alpha} b^{\beta} c^{\gamma} d^{\delta} .
\end{aligned}
$$

one finds

$$
(\mathrm{a} \cdot \mathrm{~b})=(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}),
$$

where the coefficients are

$$
(\mathrm{abcd})=-(\overline{\mathrm{a}} \overline{\mathrm{c}} \overline{\mathrm{~d}})
$$

$$
\begin{aligned}
& \overline{\mathrm{a}}=\sum_{\mathrm{j}} \mathrm{a}_{\mathrm{j}} \mathrm{e}^{\mathrm{i} \delta_{\mathrm{s}} \mathrm{e}} \mathrm{e}^{-\mathrm{i} \phi_{\mathrm{j}}}, \\
& \overline{\mathrm{~b}}=\sum_{\mathrm{j}} \mathrm{~b}_{\mathrm{j}} \mathrm{e}^{\mathrm{i} \delta_{\mathrm{sj}}} \mathrm{e}^{-\mathrm{i} \phi_{\mathrm{dj}}}, \\
& \overline{\mathrm{c}}=\sum_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \mathrm{e}^{\mathrm{i} \delta_{\mathrm{p} j}} \mathrm{e}^{-\mathrm{i} \phi_{\phi_{\mathrm{p}}}} .
\end{aligned}
$$

Define $\mathrm{e}^{\alpha}=\varepsilon_{\alpha \beta \gamma \delta} b^{\beta} \mathrm{c}^{\gamma} \mathrm{d}^{\delta}$

$$
\mathrm{e}^{\alpha} \rightarrow-\overline{\mathrm{e}}^{\alpha}=\left(-\mathrm{e}_{0}, \overrightarrow{\mathrm{e}}\right)
$$

Spin-1 wave function should be pseudo-vector as e.

$$
\phi^{\alpha}(m) \rightarrow-\bar{\phi}^{\alpha}(m)
$$

The minus sign will induce an interesting property between $|\mathbf{M}|^{2}$ and $|\bar{M}|^{2}$

$$
\begin{aligned}
&|\overline{\mathcal{M}}|^{2}=|\bar{a}|^{2}\left|\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right|^{2}+\frac{|\bar{b}|^{2}}{m_{1}^{2} m_{2}^{2}}\left|\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right)\right|^{2} \\
&+\frac{|\bar{c}|^{2}}{m_{1}^{2} m_{2}^{2}}\left|\epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta}\right|^{2} \\
&+2 \frac{\operatorname{Re}\left(\bar{a} \bar{b}^{*}\right)}{m_{1} m_{2}}\left(\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right)\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right) \\
&-2 \frac{\operatorname{Im}(\bar{a} \bar{c}}{m_{1} m_{2}}\left(\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right) \epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta} \\
&-2 \frac{\operatorname{Im}\left(\bar{b} \bar{c}^{*}\right)}{m_{1}^{2} m_{2}^{2}}\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right) \epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta} .
\end{aligned}
$$

$$
\bar{A}_{T} \propto-\operatorname{Im}\left(\overline{a c}^{*}\right)=\sum_{i, j} a_{i} c_{j} \sin [\phi-\delta]
$$

$$
\begin{array}{r}
\frac{1}{2}\left(\mathcal{A}_{\mathcal{T}}+\overline{\mathcal{A}}_{\mathcal{T}}\right) \propto \frac{1}{2}\left[\operatorname{Im}\left(a c^{*}\right)-\operatorname{Im}\left(\bar{a} \bar{c}^{*}\right)\right] \\
\quad=\sum_{i, j} a_{i} c_{j} \sin \left(\phi_{s i}-\phi_{p j}\right) \cos \left(\delta_{s i}-\delta_{p j}\right),
\end{array}
$$

and

$$
\begin{array}{r}
\frac{1}{2}\left(\mathcal{A}_{\mathcal{T}}-\overline{\mathcal{A}}_{\mathcal{T}}\right) \propto \frac{1}{2}\left[\operatorname{Im}\left(a c^{*}\right)+\operatorname{Im}\left(\bar{a} \bar{c}^{*}\right)\right] \\
\quad=\sum_{i, j} a_{i} c_{j} \cos \left(\phi_{s i}-\phi_{p j}\right) \sin \left(\delta_{s i}-\delta_{p j}\right) .
\end{array}
$$

So far, a nonzero $\mathcal{A}_{\mathcal{T}}+\overline{\mathcal{A}}_{\mathcal{T}}$ will undoubtedly be a clean signal of C'P non-conservation.

at least one nonzero weak phase exists.

$$
\begin{aligned}
& \mathcal{A}_{\text {dir }} \propto \sin \phi \sin \delta, \\
& \mathcal{A}_{T} \propto \sin \phi \cos \delta .
\end{aligned}
$$

if delta is small

As has been noted in $B->V V$ decay, the decay amplitude can be expressed as

$$
A\left(D \rightarrow V_{1} V_{2}\right)=A_{0}\left(m_{2} / E_{2}\right) \varepsilon_{1}^{* L} \cdot \varepsilon_{2}^{* L}-\frac{A_{\|}}{\sqrt{2}} \vec{\varepsilon}_{1}^{* T} \cdot \vec{\varepsilon}_{2}^{* T}-i \frac{A_{\perp}}{\sqrt{2}} \vec{\varepsilon}_{1}^{*} \times \vec{\varepsilon}_{2}^{*} \cdot \hat{p}
$$

$\overrightarrow{\mathcal{E}}^{*}$ : polarization three-vecotr
$\hat{p}$. a unit vector in the direction of the momentum of V 2
$\hat{p}$ : in the rest frame of V1.

$$
\begin{aligned}
\varepsilon^{* L} & \equiv \hat{p} \cdot \vec{\varepsilon}^{*} \\
\vec{\varepsilon}^{* T} & =\vec{\varepsilon}^{*}-\varepsilon^{* L} \hat{p}
\end{aligned}
$$

CP even $\overrightarrow{\boldsymbol{\varepsilon}}_{1}^{*} \cdot \overrightarrow{\boldsymbol{E}}_{2}^{*}$ contributes to $A_{0}$ and $A_{\|}$
$\vec{\varepsilon}_{1}^{*} \cdot \hat{p} \varepsilon_{2}^{*} \cdot \hat{p} \equiv \varepsilon_{1}^{* L} \cdot \varepsilon_{2}^{* L}$ only to $A_{0}$
$\vec{\varepsilon}_{1}^{*} \times \vec{\varepsilon}_{2}^{*} \cdot \hat{p} \quad$ contributes to $A_{\perp}$

## Writing up the polarization four-vector in the rest frame fo V1, comparing the two sets of expressions for the decay amplitudes,

we find the helicities are the linear combination of the complex coefficients $a, b$ and $c$.

$$
\begin{aligned}
& A_{0}=-a x-b\left(x^{2}-1\right) \\
& A_{\|}=\sqrt{2} a \\
& A_{\perp}=\sqrt{2} c \sqrt{x^{2}-1} \\
& \text { where } \\
& x=\frac{k \cdot q}{m_{1} m_{2}}=\frac{m_{D}^{2}-m_{1}^{2}-m_{2}^{2}}{2 m_{1} m_{2}}
\end{aligned}
$$

Let us first write out the full angular dependence of the process

$$
D \rightarrow V_{1} V_{2} \rightarrow\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)
$$

For a cascade decay, an adequate formalism to treat the problem is the frame work of helicity amplitudes.

$\phi$ is the angle between the two decay planes of vector mesons in the D rest frame.

Fig. 1. Illustrative plot for the decay kinematics of process $D \rightarrow V_{1} V_{2} \rightarrow$ $\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)$ in the rest frame of $V_{1,2}$.

$$
\begin{array}{ll}
\frac{d \Gamma}{d \cos \theta_{1} d \cos \theta_{2} d \phi} \propto & \frac{1}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos ^{2} \phi\left|A_{\|}\right|^{2} \\
& +\frac{1}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin ^{2} \phi\left|A_{\perp}\right|^{2} \\
\text { duced } A_{\perp} \text { with } & +\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}\left|A_{0}\right|^{2} \\
\text { CP eigenvalue } & -\frac{1}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin 2 \phi \operatorname{Im}\left(A_{\perp} A_{\|}^{*}\right) \\
\text { even partners } & -\frac{\sqrt{2}}{4} \sin 2 \theta_{1} \sin 2 \theta_{2} \cos \phi \operatorname{Re}\left(A_{\|} A_{0}^{*}\right) \\
& +\frac{\sqrt{2}}{4} \sin 2 \theta_{1} \sin 2 \theta_{2} \sin \phi \operatorname{Im}\left(A_{\perp} A_{0}^{*}\right), \\
& \\
& \text { J.G.Korner, G.R.Goldstein, } \\
& \text { Phys.Lett.B } 89(1979) 105 .
\end{array}
$$

We have introduced $A_{\perp}$ with definite odd CP eigenvalue and the CP even partners

$$
\begin{aligned}
& \mathrm{A}_{0}, \mathrm{~A}_{\|} \\
& A_{0}=A_{0} \\
& A_{\|}=\frac{1}{\sqrt{2}}\left(A_{11}+A_{-1-1}\right), \\
& A_{\perp}=\frac{1}{\sqrt{2}}\left(A_{11}-A_{-1-1}\right),
\end{aligned}
$$

> M.Beneke, J.Rohre, and D.s.Yang
> Nucl.Phys.B774 (2007) 64.

As discussed previously, the TP asymmetry is connected with angular distribution, one can define the following $T$ odd quantities.

$$
\begin{aligned}
& \mathcal{A}_{T}^{0} \equiv \frac{\operatorname{Im}\left(A_{\perp} A_{0}^{*}\right)}{\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}, \\
& \text { and } \\
& \mathcal{A}_{\mathcal{T}}^{\|} \equiv \frac{\operatorname{Im}\left(A_{\perp} A_{\|}^{*}\right)}{\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}},
\end{aligned}
$$

thus we will derive the genuine CP violating observables,

$$
\begin{aligned}
\mathcal{A} & =\frac{1}{2}\left(\mathcal{A}_{\mathcal{T}}^{0}+\overline{\mathcal{A}}_{\mathcal{T}}^{0}\right) \\
& =\frac{1}{2}\left(\frac{\operatorname{Im}\left(A_{\perp} A_{0}^{*}\right)}{\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}+\frac{\operatorname{Im}\left(\bar{A}_{\perp} \bar{A}_{0}^{*}\right)}{\left|\bar{A}_{0}\right|^{2}+\left|\bar{A}_{\perp}\right|^{2}+\left|\bar{A}_{\|}\right|^{2}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{A}^{\prime} & =\frac{1}{2}\left(\mathcal{A}_{\mathcal{T}}^{\|}+\overline{\mathcal{A}}_{T}^{\|}\right) \\
& =\frac{1}{2}\left(\frac{\operatorname{Im}\left(A_{\perp} A_{\|}^{*}\right)}{\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}+\frac{\operatorname{Im}\left(\bar{A}_{\perp} \bar{A}_{\|}^{*}\right)}{\left|\bar{A}_{0}\right|^{2}+\left|\bar{A}_{\perp}\right|^{2}+\left|\bar{A}_{\|}\right|^{2}}\right) .
\end{aligned}
$$

Let us recall the related work in the past days.

1. The $T$ odd momentum found in the rare mode $K_{L} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$ can teach us important lessons for future searches in charm decays.

Phys.Rev.D 46, 1035 (1992).
2. For $D$ decays $\stackrel{(-)}{D} \rightarrow K \bar{K} \pi^{+} \pi^{-}$can be treated in an analogous way.

Bigi, hep-ph/0703132
Defining $\phi$ as the angle between the $K \bar{K}$ and $\pi^{+} \pi^{-}$ planes, then one has

$$
\begin{aligned}
& \frac{d \Gamma}{d \phi}\left(D \rightarrow K \bar{K} \pi^{+} \pi^{-}\right)=\Gamma_{1} \cos ^{2} \phi+\Gamma_{2} \sin ^{2} \phi+\Gamma_{3} \cos \phi \sin \phi, \\
& \frac{d \Gamma}{d \phi}\left(\bar{D} \rightarrow K \bar{K} \pi^{+} \pi^{-}\right)=\bar{\Gamma}_{1} \cos ^{2} \phi+\bar{\Gamma}_{2} \sin ^{2} \phi-\bar{\Gamma}_{3} \cos \phi \sin \phi . \\
& \Gamma_{1} \neq \bar{\Gamma}_{1}, \Gamma_{2} \neq \bar{\Gamma}_{2} \longrightarrow \begin{array}{l}
\text { direct CP violation in the } \\
\text { partial width }
\end{array} \\
& \Gamma_{3} \neq \bar{\Gamma}_{3} \quad \longleftrightarrow \text { CP violation! }
\end{aligned}
$$

The only reported experimental search for $T$ odd asymmetries for D mesons.
J.M.Link et al, FOCUS collaboration, Phys.Lett.B 622 (2005) 239.


T asymmetry versus various set of cuts, the dashed lines show $A_{T}$ the quoted $\pm 1 \sigma$ asymmetry

Table 1
$T$ violating asymmetries in $D$ meson decays from the FOCUS experiment [25].

| Decay mode | $\mathcal{A}(\%)$ |
| :--- | :--- |
| $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$ | $1.0 \pm 5.7 \pm 3.7$ |
| $D^{+} \rightarrow K_{S} K^{+} \pi^{+} \pi^{-}$ | $2.3 \pm 6.2=2.2$ |
| $D_{S}^{+} \rightarrow K_{S} K^{+} \pi^{+} \pi^{-}$ | $-3.6 \pm 6 .{ }^{2} \pm 2.3$ |
|  |  |

No evidence for a T asymmetry is observed!

The large BES-III data sample is expected to provide enhanced sensitivity to possible T asymmetry.

We will consider the potential sensitivity on the CP violating observalbes $A$ and $A^{\prime}$ at BES-III.

Table 2
The promising ( $W$ ) modes with large branching fractions, efficiencies and expected errors on the $T$ asymmetry: the corresponding expected errors are estimated by assuming $20 \mathrm{fb}^{-1}$ data at $\psi(3770)$ peak at BES-III; the branching fractions with asterisk are estimated according to Refs. [29-32]. The last row is from $D^{+}$decay.

| $V V$ | Br $(\%)$ | Eff. $(\epsilon)$ | Expected errors |
| :--- | :--- | :--- | :--- |
| $\rho^{0} \rho^{0} \rightarrow\left(\pi^{+} \pi^{-}\right)\left(\pi^{+} \pi^{-}\right)$ | 0.18 | 0.74 | 0.08 |
| $\bar{K}^{* 0} \rho^{0} \rightarrow\left(K^{-} \pi^{+}\right)\left(\pi^{+} \pi^{-}\right)$ | 1.08 | 0.004 |  |
| $\rho^{0} \phi \rightarrow\left(\pi^{+} \pi^{-}\right)\left(K^{+} K^{-}\right)$ | 0.14 | 0.002 |  |
| $\rho^{+} \rho^{-} \rightarrow\left(\pi^{+} \pi^{0}\right)\left(\pi^{-} \pi^{0}\right)$ | $0.6^{*}$ | 0.55 | 0.002 |
| $K^{*+} K^{*-} \rightarrow\left(K^{+} \pi^{0}\right)\left(K^{-} \pi^{0}\right)$ | $0.08^{*}$ | 0.55 | 0.006 |
| $K^{* 0} \bar{K}^{* 0} \rightarrow\left(K^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$ | 0.048 | 0.62 | 0.002 |
| $\bar{K}^{* 0} \rho^{+} \rightarrow\left(K^{-} \pi^{+}\right)\left(\pi^{+} \pi^{0}\right)$ | 1.33 | 0.59 | 0.001 |

1. The branching ratios with asterisks have not been measured yet, but some estimates combining naïve factorization and models for FSI are available.
2. The estimated efficiencies are average values for the various partial waves by assuming that the magnitude of the longitudinal polarization is half of decay rate.

## Some issues in the experiments.

1. In the future, a careful measurements about both the efficiencies and the branching fractions for each partial wave are suggested.
2. A more realistic analysis requires a likelyhood fit to the full angular dependence.
3. Systematics will dominate the results.

- mis-reconstruction of PP as the events that actually come from other resonances.
- Non-resonance background contributions
- sizable width of the vector resonance.

The precise measurements are beyond the scope the this paper and are encouraged at BES-III and Super tau-charm factory.

## Conclusions

- We studied the CP violation in D to VV decay in which the T odd triple-correlation is examined and the genuine CP violating observables are constructed.

$$
\begin{aligned}
& \mathcal{A}_{d i r} \propto \sin \phi \sin \delta, \\
& \mathcal{A}_{T} \propto \sin \phi \cos \delta .
\end{aligned}
$$

- The T asymmetry is more sensitive to NP.
- Large D data sample will provide a great opportunity to perform it.

We would thank Z.z.Xing, C.D.Lv and D.s. Yang for useful discussions.

