Precise test of SM and the new physicseffects for gauge selfcouplings

郭磊 中国科学技术大学粒子物理与技术中心 南昌 2010/04/19

Outline

- Gauge boson self couplings in SM and the new physics
- The present research status for gauge boson self couplings
- NLO calculations of Z⁰Z⁰Z⁰ production at ILC
- $e^+e^- \rightarrow W^+W^-Z^0$ process research with NLO corrections at ILC

Summary

In the SM , SU(2)_L × U(1)_Y gauge invariance provides stringent constraints on the strengthes of triple and quartic gauge couplings

$$\begin{split} \mathcal{L}_{WWV}/g_{WWV} &= ig_1^V (W^{\dagger}_{\mu\nu}W^{\mu}V^{\nu} - W^{\dagger}_{\mu}V_{\nu}W^{\mu\nu}) + i\kappa_V W^{\dagger}_{\mu}W_{\nu}V^{\mu\nu} \\ &+ \frac{i\lambda_V}{m_W^2} W^{\dagger}_{\lambda\mu}W^{\mu}_{\nu}V^{\nu\lambda}, \end{split}$$

where $V \equiv Z$ or γ and $W_{\mu\nu} \equiv \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}$, $V_{\mu\nu} \equiv \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu}$, $g_{WW\gamma} = -e$, and $g_{WWZ} = -e \cot \theta_W$. In the standard model, $g_1^V = \kappa_V = 1$ and $\lambda_V = 0$.

$$\mathcal{L}_{sm} = \frac{v^2}{4} \operatorname{tr} (D_{\mu} U^{\dagger} D^{\mu} U) - \frac{1}{2} \operatorname{tr} (\mathcal{W}_{\mu\nu} \mathcal{W}^{\mu\nu}) - \frac{1}{2} \operatorname{tr} (\mathcal{B}_{\mu\nu} \mathcal{B}^{\mu\nu})$$
where
$$U(x) \equiv \exp\left(\frac{i\tau^a \omega^a}{v}\right)$$

$$\mathcal{W}_{\mu} \equiv \frac{\tau^a}{2} W^a_{\mu},$$

$$\mathcal{W}_{\mu\nu} \equiv \partial_{\mu} \mathcal{W}_{\nu} - \partial_{\nu} \mathcal{W}_{\mu} + ig_2 [\mathcal{W}_{\mu}, \mathcal{W}_{\nu}],$$

$$\mathcal{B}_{\mu} \equiv \frac{\tau^3}{2} B_{\mu},$$

$$\mathcal{B}_{\mu\nu} \equiv \partial_{\mu} \mathcal{B}_{\nu} - \partial_{\nu} \mathcal{B}_{\mu},$$

$$D_{\mu} U \equiv \partial_{\mu} U + ig_2 \mathcal{W}_{\mu} U - ig_Y U \mathcal{B}_{\mu}.$$

 W^a_{μ} and B_{μ} are $SU(2)_L$ and U(1) gauge fields, respectively.

$$\begin{split} \mathcal{L} &= +\beta_1 \frac{v^2}{4} \mathrm{tr}(V_{\mu}T) \mathrm{tr}(V^{\mu}T) + \alpha_1 g_2 \mathrm{tr} \left(\mathcal{W}^{\mu\nu} U \mathcal{B}_{\mu\nu} U^{\dagger} \right) \\ &+ i \alpha_2 g_Y \mathrm{tr} \left(U^{\dagger} \left[V_{\mu}, V_{\nu} \right] U \mathcal{B}^{\mu\nu} \right) + i \alpha_3 g_2 \mathrm{tr} \left(\left[V_{\mu}, V_{\nu} \right] \mathcal{W}^{\mu\nu} \right) \\ &+ \alpha_4 \mathrm{tr}(V_{\mu}V_{\nu}) \mathrm{tr}(V^{\mu}V^{\nu}) + \alpha_5 \mathrm{tr}(V_{\mu}V^{\mu}) \mathrm{tr}(V_{\nu}V^{\nu}) \\ &+ \alpha_6 \mathrm{tr}(V_{\mu}V_{\nu}) \mathrm{tr}(TV^{\mu}) \mathrm{tr}(TV^{\nu}) + \alpha_7 \mathrm{tr}(V_{\mu}V^{\mu}) \mathrm{tr}(TV_{\nu}) \mathrm{tr}(TV^{\nu}) \\ &+ \frac{1}{4} \alpha_8 g_2^2 \mathrm{tr}(T\mathcal{W}_{\mu\nu}) \mathrm{tr}(T\mathcal{W}^{\mu\nu}) + \frac{i}{2} \alpha_9 g_2 \mathrm{tr}(T\mathcal{W}_{\mu\nu}) \mathrm{tr}(T \left[V^{\mu}, V^{\nu} \right]) \\ &+ \frac{1}{2} \alpha_{10} \mathrm{tr}(TV_{\mu}) \mathrm{tr}(TV^{\mu}) \mathrm{tr}(TV_{\nu}) \mathrm{tr}(TV^{\nu}) + \alpha_{11} g_2 \epsilon^{\mu\nu\rho\lambda} \mathrm{tr}(TV_{\mu}) \mathrm{tr}(V_{\nu}\mathcal{W}_{\rho\lambda}), \\ \mathrm{where} \ V_{\mu} \equiv D_{\mu} U \cdot U^{\dagger}, \ T \equiv U \tau^3 U^{\dagger}, \end{split}$$

vertex	α_1	α_2	α_3	α_4	$lpha_5$	$lpha_6$	α_7	α_8	α_9	α_{10}	α_{11}	β_1	processes
$WW\gamma$	0	0	0					0	0				$\rightarrow WW, e\nu W$
WWZ	0	0	0					0	0		0	0	$\rightarrow WW, e\nu W$
ZZWW	0		0		0		0					0	$\rightarrow WWZ$
ZWZW	0		0	0		0						0	$\rightarrow WWZ$
$Z\gamma WW$	0		0									0	$\rightarrow WW\gamma$
ZZZZ				0	0	0	0			0			$\rightarrow ZZZ$

Triple gauge couplings

The triple gauge couplings (TGCs) have been well measured at the LEP2

The LEP Collaborations, A combination of preliminary electroweak measurements and constraints on the standard model, CERN-PH-EP/2004-069, arXiv: hep-ex/0412015v2.

Parameter	68% C.L.	95% C.L.
g_1^{Z}	$0.991\substack{+0.022\\-0.021}$	[0.949, 1.034]
κ_{γ}	$0.984_{-0.047}^{+0.042}$	[0.895, 1.069]
λ_γ	$-0.016\substack{+0.021\\-0.023}$	[-0.059, 0.026]

Triple gauge couplings

 The CDF and D0 collaborations also performed some experiments about the diboson production and presented the limitations on anomalous TGCs

Mark S. Neubauer, FERMILAB-CONF-06-115-E, arXiv: hep-ex/0605066v2; Junjie Zhu, arXiv: 0907.3239v1; The D0 Collaboration, V. Abazov, et al., Combined measurements of anomalous charged trilinear gauge-boson couplings from diboson production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, FERMILAB-PUB-09-380-E, arXiv: 0907.4952v1. D0: $-0.12 < \Delta g_1^Z < 0.19$, $-0.44 < \Delta \kappa_{\gamma} < 0.55$ and $-0.10 < \lambda_{Z,\gamma} < 0.11$ CDF: $-0.20 < \Delta g_1^Z < 0.29$, $-1.01 < \Delta \kappa_{Z,\gamma} < 1.27$ and $-0.16 < \lambda_{Z,\gamma} < 0.17$

Quartic gauge couplings

- Triple massive gauge boson production processes can be used to probe the quartic gauge couplings (QGCs)
- The precise predictions for the VVV production at hadron colliders were provided. NLO QCD corrections increase the cross sections about 70% for W+W-Z⁰ production and 50% for Z⁰Z⁰Z⁰ production.

A. Lazopoulos, K. Melnikov and F. Petriello, Phys. Rev. D76 (2007) 014001; V. Hankele and D. Zeppenfeld, Phys. Lett. B661 (2008) 103; T. Binoth, G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP 0806 (2008) 082.

Gauge coupling at ILC

- The e⁺e[−] → W⁺W[−] processes is the most sensitive process for triple gauge boson couplings test at ILC
- Complete NLO calculations for $e^+e^- \rightarrow 4f$ (include $e^+e^- \rightarrow WW \rightarrow 4f$)has been presented by A. Denner and etc. The NLO corrections is about 5%~10%.

A. Denner, S. Dittmaier, M. Roth and L. H. Wieders, Phys. Lett. B612 (2005) 223; Nucl. Phys. B724 (2005) 247.

Gauge coupling at ILC

ILC is also sensitive to the quartic couplings. Two processes are important in this context:

(1) triple gauge boson production: e⁺e⁻ → VVV
(2) vector boson scattering: (WZ → WZ and ZZ → ZZ) e⁺e⁻ → ℓ₁ℓ₂VV'

with $\ell_{1,2} = e, \nu$ and V, V' = W, Z.

PHYSICAL REVIEW D 78, 016007 (2008)

Complete one-loop electroweak corrections to ZZZ production at the ILC

Su Ji-Juan, Ma Wen-Gan, Zhang Ren-You, Wang Shao-Ming, and Guo Lei

 $m_e = 0.51099892 \text{ MeV}, m_\mu = 105.658369 \text{ MeV}, m_\tau = 1776.99 \text{ MeV}, m_u = 66 \text{ MeV}, m_c = 1.25 \text{ GeV}, m_t = 174.2 \text{ GeV},$

 $m_d = 66 \text{ MeV}, \qquad m_s = 95 \text{ MeV}, \qquad m_b = 4.7 \text{ GeV},$

 $m_W = 80.403 \text{ GeV}, \quad m_Z = 91.1876 \text{ GeV}.$

 $\sqrt{s} = 500 \ GeV$ and $m_H = 115 \ GeV$, 150 GeV, 170 GeV

$m_H(GeV)$	$\sigma_{LO}(fb)$	$\sigma_{tot}(fb)$	$\Delta \sigma_{QED}(fb)$	$\Delta \sigma_{tot}(fb)$	$\delta_{QED}(\%)$	$\delta_{tot}(\%)$
115	1.0055(2)	0.9159(7)	-0.0451(7)	-0.0896(7)	-4.49(7)	-8.91(7)
150	1.0975(2)	1.0194(8)	-0.0444(8)	-0.0780(8)	-4.04(7)	-7.11(7)
170	1.2564(2)	1.1989(9)	-0.0393(8)	-0.0575(9)	-3.12(7)	-4.58(7)

 \sqrt{s} [GeV]

Physics Letters B 680 (2009) 321-327

Full electroweak one-loop corrections to $W^+W^-Z^0$ production at the ILC

Sun Wei, Ma Wen-Gan, Zhang Ren-You*, Guo Lei, Song Mao

Erratum Physics Letters B 684 (2010) 281

$$\begin{split} m_Z &= 91.1876 \; GeV, & m_W = 80.398 \; GeV, & \sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2} = 0.222646, \\ m_u &= m_d = 66 \; MeV, & m_s = 104 \; MeV, & m_c = 1.27 \; GeV, \\ m_b &= 4.2 \; GeV, & m_t = 171.2 \; GeV, & m_e = 0.510998910 \; keV, \\ m_\mu &= 105.658389 \; MeV, & m_\tau = 1776.84 \; MeV, \end{split}$$

$\sqrt{s} \; (\text{GeV})$	$m_H(GeV)$	$\sigma_{tree}(fb)$	$\sigma_{tot}(fb)$	$\Delta \sigma_{tot}(fb)$	$\delta_{ew}(\%)$
300	120	2.9457(2)	2.427(2)	-0.519(2)	-17.62(7)
300	150	3.1605(2)	2.633(2)	-0.527(2)	-16.67(6)
500	120	35.810(4)	33.51(5)	-2.30(5)	-6.4(1)
500	150	36.035(4)	33.85(5)	-2.19(5)	-6.1(1)
800	120	52.34(1)	49.70(6)	-2.64(6)	-5.0(1)
800	150	52.46(1)	50.10(8)	-2.36(8)	-4.5(1)
1000	120	53.21(1)	50.37(8)	-2.84(8)	-5.3(1)
1000	150	53.28(1)	50.68(7)	-2.60(7)	-4.9(1)

Other works for the processes

• Comparison of $e^+e^- \rightarrow W^+W^-Z$

		$M_H = 120 \mathrm{GeV}$			$M_H = 150 \mathrm{GeV}$		
$\sqrt{s} [{ m TeV}]$		σ_{Born} [fb]	$\Delta \sigma_{NLO}$ [fb]	σ_{Born} [fb]	$\Delta \sigma_{NLO}$ [fb]		
0.3	Our work	2.9457(2)	-0.519(2)	3.1605(2)	-0.527(2)		
	Ref. [1]	2.94576(4)	-0.5240(3)	3.16043(4)	-0.5322(3)		
0.5	Our work	35.810(4)	-2.30(5)	36.035(4)	-2.19(5)		
	Ref. [1]	35.8076(8)	-2.359(3)	36.033(1)	-2.239(3)		
0.8	Our work	52.34(1)	-2.64(6)	52.46(1)	-2.36(8)		
	Ref. [1]	52.337(3)	-2.631(7)	52.452(4)	-2.468(8)		
1.0	Our work	53.21(1)	-2.84(8)	53.28(1)	-2.60(7)		
	Ref. [1]	53.196(4)	-2.771(8)	53.235(4)	-2.612(8)		

[1] NLO corrections to $e^+e^- \rightarrow W^+W^-Z$ and $e^+e^- \rightarrow ZZZ$

F. Boudjema, L. D. Ninh, S. Hao, and M. M. Weber, arXiv:0912.4234.

Other works for the processes

• Comparison of $e^+e^- \rightarrow ZZZ$

		$M_H = 120 \mathrm{GeV}$		$M_H = 1$	$50\mathrm{GeV}$
$\sqrt{s} [{ m GeV}]$		σ_{Born} [fb]	δ_{full} [%]	σ_{Born} [fb]	δ_{full} [%]
350	Our work	0.58696	-15.79	0.68422	-13.91
	Ref. [1]	0.586955(2)	-15.850(1)	0.684209(2)	-13.970(1)
370	Our work	0.70531	-13.79	0.80821	-12.00
	Ref. [1]	0.705303(2)	-13.822(1)	0.808196(3)	-11.986(1)
400	Our work	0.83409	-11.75	0.9375	-9.98
	Ref. [1]	0.834083(4)	-11.765(2)	0.937484(4)	-9.973(1)
450	Our work	0.95792	-9.79	1.05294	-8.06
	Ref. [1]	0.957904(5)	-9.763(3)	1.052917(5)	-8.044(2)
500	Our work	1.01384	-8.70	1.09754	-7.09
	Ref. [1]	1.013806(6)	-8.682(4)	1.097440(7)	-7.064(4)
600	Our work	1.03052	-7.77	1.09370	-6.36
	Ref. [1]	1.030489(9)	-7.714(6)	1.093668(9)	-6.289(6)
700	Our work	0.99611	-7.47	1.04437	-6.20
	Ref. [1]	0.99607(1)	-7.438(9)	1.04437(1)	-6.164(9)
800	Our work	0.94567	-7.50	0.98647	-6.61
	Ref. [1]	0.94563(1)	-7.46(1)	0.98343(1)	-6.30(1)
900	Our work	0.89168	-7.71	0.92196	-6.65
	Ref. [1]	0.89164(1)	-7.62(1)	0.92191(1)	-6.55(1)
1000	Our work	0.83892	-7.94	0.86366	-6.89
	Ref. [1]	0.83887(2)	-7.86(2)	0.86362(2)	-6.86(2)

Summary

- At present, The TGCs experiment results (LEP, Tevatron) agree with the SM prediction.
- NLO correction for gauge-self couplings process can not be neglected, which is about 50%-70% at LHC and 5%-10% at ILC.
- Future tasks for gauge-self couplings at ILC:
 - (1) Precise calculations for gauge boson scatting processes;
 - (2) gauge-self couplings processes calculations of new physic effects.
 - (3) Simulations, etc.

Thanks!