The pure annihilation type $B_{c} \rightarrow M_{2} M_{3}$ decays in the perturbative QCD approach

Xin Liu(刘新)

Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China

Based on: X. Liu, Z.J. Xiao and C.D. Lü, Phys. Rev. D 81, 014022 (2010)
The 8th Ann. Conf. on High Energy Physics, Apr. 16-21, 2010, Nanchang

OUTLINE

1. Motivation
2. The pQCD Approach and Perturbative Calculations
3. Numerical Results and Some Remarks
4. Summary

1. Motivation

A In 1998, a new stage of B_{c} physics began with the first observation of the meson B_{c} at Tevatron. One can study the two heavy flavors b and c in B_{c} meson simultaneously.
\checkmark From an experimental point of view,

- The LHC experiment is now running, where the B_{c} meson could be produced abundantly.
- The B_{c} meson decays may provide windows for testing the predictions of the SM and can shed light on new physics scenarios beyond the SM.

From a theoretical point of view,

- Due to its heavy-heavy nature and the participation of strong interaction, the non-leptonic decays of B_{c} meson complicate the extraction of parameters in SM;
- But, they provide great opportunities to study the perturbative and nonperturbative QCD, final state interactions, etc.;
- The non-leptonic B_{c} weak decays have been widely studied in literatures.
* Naive factorization approach(NFA),
* QCD factorization approach(QCDF),
* Perturbative QCD approach(pQCD),
* Other approaches and/or methods.

A Recently, charmless hadronic $B_{c} \rightarrow P P, P V / V P, V V$ decays have been studied [See Phys. Rev. D 80-114031]. But, $\operatorname{Br}\left(B_{c} \rightarrow\right.$ $\left.\phi K^{+}, \bar{K}^{(*) 0} K^{(*)+}\right)_{\mathrm{SU}(3)_{\mathrm{F}} \text { Symmetry }} \sim 10 \times \operatorname{Br}\left(B_{c} \rightarrow \phi K^{+}, \bar{K}^{(*) 0} K^{(*)+}\right)_{\mathrm{QCDF}}$.
\& The size of annihilation contributions is an important issue in B physics. For example, see Refs.[Eur. Phys. J. C 28-305; ECONF 001-C 070512; Phys. Lett. B 504-6,601-151,622-63; Phys. Rev. D 63-054008, 63-074009,71054025;Sci. China G 49-357].

4 The importance of annihilation contributions has already been tested in the previous predictions by employing the pQCD approach.

- Branching ratios of pure annihilation $B \rightarrow D_{s} K$ decays;
- Direct CP asymmetries of $B^{0} \rightarrow \pi^{+} \pi^{-}, K^{+} \pi^{-}$decays;
- Explanation of $B \rightarrow \phi K^{*}$ polarization problem.
\odot Motivated by the important sizable annihilation contributions and the large discrepancies between the predictions by $\mathrm{SU}(3)_{\mathrm{F}}$ symmetry and those with QCDF for $B_{c} \rightarrow M_{2} M_{3}{ }^{1}$, we here focus on these pure annihilation type decays within the framework of pQCD approach.

[^0]
2. The pQCD Approach and Perturbative Calculations

In hadronic B decays, the dominant TH-uncertainties come from the evaluation of the relevant HME. Here the factorization approaches being used play the key role.

2.1 The pQCD Factorization Approach

In pQCD approach, the decay amplitude of $B_{c} \rightarrow M_{2} M_{3}$ decays can be written conceptually as the convolution,

$$
\begin{equation*}
\mathcal{A} \sim \int d^{4} k_{1} d^{4} k_{2} d^{4} k_{3} \operatorname{Tr}\left[C(t) \Phi_{B_{c}}\left(k_{1}\right) \Phi_{M_{2}}\left(k_{2}\right) \Phi_{M_{3}}\left(k_{3}\right) H\left(k_{1}, k_{2}, k_{3}, t\right)\right], \tag{1}
\end{equation*}
$$

$k_{i}(i=1,2,3)$: the momenta of quark in the related mesons; Tr: the trace over Dirac and color indices; $C(t)$: the Wilson coefficients; $H\left(k_{1}, k_{2}, k_{3}, t\right)$: the hard kernel and can be calculated perturbatively; Φ_{M} : the wave function of the meson M; t : the largest energy scale in hard function H.

Figure 1: Typical Feynman diagrams contributing to the pure annihilation $B_{c} \rightarrow P P, P V / V P, V V$ decays at leading order.
\diamond Choosing the light-cone coordinates: $P_{1}=\frac{m_{B c}}{\sqrt{2}}\left(1,1, \mathbf{0}_{T}\right), \quad P_{2}=\frac{m_{B_{c}}}{\sqrt{2}}(1-$ $\left.r_{3}^{2}, r_{2}^{2}, \mathbf{0}_{T}\right), \quad P_{3}=\frac{m_{B_{c}}}{\sqrt{2}}\left(r_{3}^{2}, 1-r_{2}^{2}, \mathbf{0}_{T}\right) ;$ with $r_{2}=m_{M_{2}} / m_{B_{c}}$, and $r_{3}=$ $m_{M_{3}} / m_{B_{c}}$.
\$ the longitudinal polarization vectors, ϵ_{2}^{L} and ϵ_{3}^{L}, can be given by $\epsilon_{2}^{L}=$ $\frac{m_{B_{c}}}{\sqrt{2} m_{M_{2}}}\left(1-r_{3}^{2},-r_{2}^{2}, \mathbf{0}_{T}\right), \quad \epsilon_{3}^{L}=\frac{m_{B c}}{\sqrt{2} m_{M_{3}}}\left(-r_{3}^{2}, 1-r_{2}^{2}, \mathbf{0}_{T}\right)$. The transverse ones are parameterized as $\epsilon_{2}^{T}=\left(0,0,1_{T}\right)$, and $\epsilon_{3}^{T}=\left(0,0,1_{T}\right)$.
\bigcirc Putting the (light-) quark momenta in B_{c}, M_{2} and M_{3} mesons as k_{1}, k_{2}, and $k_{3}: k_{1}=\left(x_{1} P_{1}^{+}, 0, \mathbf{k}_{1 T}\right), \quad k_{2}=\left(x_{2} P_{2}^{+}, 0, \mathbf{k}_{2 T}\right), \quad k_{3}=\left(0, x_{3} P_{3}^{-}, \mathbf{k}_{3 T}\right)$.

The integration over k_{1}, k_{2}, and k_{3} in Eq.(1) will lead to

$$
\begin{align*}
\mathcal{A}\left(B_{c} \rightarrow M_{2} M_{3}\right) \sim & \int d x_{1} d x_{2} d x_{3} b_{1} d b_{1} b_{2} d b_{2} b_{3} d b_{3} \operatorname{Tr}\left[C(t) \Phi_{B_{c}}\left(x_{1}, b_{1}\right) \times\right. \\
& \left.\Phi_{M_{2}}\left(x_{2}, b_{2}\right) \Phi_{M_{3}}\left(x_{3}, b_{3}\right) H\left(x_{i}, b_{i}, t\right) S_{t}\left(x_{i}\right) e^{-S(t)}\right] \tag{2}
\end{align*}
$$

x_{i} : the momentum fraction of quark; b_{i} : the conjugate space coordinate of $k_{i T}$; $S_{t}\left(x_{i}\right)$: threshold resummation factor smearing the end-point singularities on x_{i}; $S(t)$: Sudakov form factor suppressing the soft dynamics effectively.

The weak effective Hamiltonian $H_{\text {eff }}$ for $B_{c} \rightarrow M_{2} M_{3}$ decays

$$
\begin{equation*}
H_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}}\left[V_{c b}^{*} V_{u D}\left(C_{1}(\mu) O_{1}(\mu)+C_{2}(\mu) O_{2}(\mu)\right)\right] \tag{3}
\end{equation*}
$$

with the single tree operators,

$$
\begin{align*}
O_{1} & =\bar{u}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{\alpha} \bar{c}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{\alpha} \\
O_{2} & =\bar{u}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{\beta} \bar{c}_{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{\alpha} \tag{4}
\end{align*}
$$

$V_{i j}$: the CKM matrix elements; Wolfenstein parametrization, $\lambda=0.2257, A=$ $0.814, \bar{\rho}=0.135$ and $\bar{\eta}=0.349 ; C_{i}(\mu)$: Wilson coefficients at the renormalization scale μ; " D ": the light down quark d or s.

Wave functions for the related mesons,

$$
\begin{align*}
\Phi_{B_{c}}(x) & =\frac{i}{\sqrt{2 N_{c}}}\left[\left(\not P+m_{B_{c}}\right) \gamma_{5} \phi_{B_{c}}(x)\right]_{\alpha \beta} \tag{5}\\
\Phi_{P}(x) & =\frac{i}{\sqrt{2 N_{c}}} \gamma_{5}\left\{\not P \phi_{P}^{A}(x)+m_{0}^{P} \phi_{P}^{P}(x)+m_{0}^{P}(\not \partial \psi-1) \phi_{P}^{T}(x)\right\}_{\alpha \beta} \tag{6}
\end{align*}
$$

$$
\begin{align*}
\Phi_{V}^{L}(x)= & \frac{1}{\sqrt{2 N_{c}}}\left\{m_{V} \phi_{V}^{* L} \phi_{V}(x)+\phi_{V}^{* L} \not P \phi_{V}^{t}(x)+m_{V} \phi_{V}^{s}(x)\right\}_{\alpha \beta} \tag{7}\\
\Phi_{V}^{T}(x)= & \frac{1}{\sqrt{2 N_{c}}}\left\{m_{V} \phi_{V}^{* T} \phi_{V}^{v}(x)+\phi_{V}^{* T} \not p \phi_{V}^{T}(x)\right. \\
& \left.\quad+m_{V} i \epsilon_{\mu \nu \rho \sigma} \gamma \gamma_{5} \epsilon_{T}^{* \nu} n^{\rho} v^{\sigma} \phi_{V}^{a}(x)\right\}_{\alpha \beta} \tag{8}
\end{align*}
$$

Note:
\& Since B_{c} meson consists of two heavy quarks and $m_{B_{c}} \simeq m_{b}+m_{c}$, the distribution amplitude $\phi_{B_{c}}$ would be close to $\delta\left(x-m_{c} / m_{B_{c}}\right)$ in the nonrelativistic limit. We therefore adopt the non-relativistic approximation form of $\phi_{B_{c}}$ as,

$$
\begin{equation*}
\phi_{B_{c}}(x)=\frac{f_{B_{c}}}{2 \sqrt{2 N_{c}}} \delta\left(x-m_{c} / m_{B_{c}}\right) \tag{9}
\end{equation*}
$$

where $f_{B_{c}}$ and N_{c} are the decay constant of B_{c} meson and the color number.
\& For pseudoscalar meson " $\eta-\eta^{\prime \prime}$ mixing, we adopt the quark-flavor basis as,

$$
\begin{equation*}
\eta_{q}=(u \bar{u}+d \bar{d}) / \sqrt{2}, \quad \eta_{s}=s \bar{s} \tag{10}
\end{equation*}
$$

The physical states η and η^{\prime} are related to η_{q} and η_{s} through a single mixing angle ϕ,

$$
\binom{\eta}{\eta^{\prime}}=U(\phi)\binom{\eta_{q}}{\eta_{s}}=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \tag{11}\\
\sin \phi & \cos \phi
\end{array}\right)\binom{\eta_{q}}{\eta_{s}}
$$

with

$$
\begin{equation*}
f_{q}=(1.07 \pm 0.02) f_{\pi}, \quad f_{s}=(1.34 \pm 0.06) f_{\pi}, \quad \phi=39.3^{\circ} \pm 1.0^{\circ} \tag{12}
\end{equation*}
$$

\& For vector meson " $\omega-\phi$ " mixing, we choose the ideal one, i.e., $\omega=$ $(\bar{u} u+\bar{d} d) / \sqrt{2}, \quad \phi=\bar{s} s$.

2.2 Perturbative Calculations

We firstly take the decays $B_{c} \rightarrow P P$ as an example to show the procedure of calculations in the pQCD approach. From the first two diagrams of Fig. 1, i.e., (a) and (b), by perturbative QCD calculations, one can obtain,

$$
\begin{align*}
F_{f a}^{P P}= & -8 \pi C_{F} m_{B_{c}}^{2} \int_{0}^{1} d x_{2} d x_{3} \int_{0}^{\infty} b_{2} d b_{2} b_{3} d b_{3} \\
& \times\left\{h _ { f a } (1 - x _ { 3 } , x _ { 2 } , b _ { 3 } , b _ { 2 }) E _ { f a } (t _ { a }) \left[x_{2} \phi_{2}^{A}\left(x_{2}\right) \phi_{3}^{A}\left(x_{3}\right)\right.\right. \\
& \left.+2 r_{0}^{2} r_{0}^{3} \phi_{3}^{P}\left(x_{3}\right)\left(\left(x_{2}+1\right) \phi_{2}^{P}\left(x_{2}\right)+\left(x_{2}-1\right) \phi_{2}^{T}\left(x_{2}\right)\right)\right] \\
& +h_{f a}\left(x_{2}, 1-x_{3}, b_{2}, b_{3}\right) E_{f a}\left(t_{b}\right)\left[\left(x_{3}-1\right) \phi_{2}^{A}\left(x_{2}\right) \phi_{3}^{A}\left(x_{3}\right)\right. \\
& \left.\left.+2 r_{0}^{2} r_{0}^{3} \phi_{2}^{P}\left(x_{2}\right)\left(\left(x_{3}-2\right) \phi_{3}^{P}\left(x_{3}\right)-x_{3} \phi_{3}^{T}\left(x_{3}\right)\right)\right]\right\} \tag{13}
\end{align*}
$$

where $\phi_{2(3)}$ corresponding to the distribution amplitudes of mesons $M_{2(3)}$, $r_{0}^{2(3)}=m_{0}^{M_{2}\left(M_{3}\right)} / m_{B_{c}}$, and $C_{F}=4 / 3$ is a color factor.

From the last two diagrams of Fig. 1, i.e., (c) and (d),

$$
\begin{align*}
M_{n a}^{P P}= & -\frac{16 \sqrt{6}}{3} \pi C_{F} m_{B_{c}}^{2} \int_{0}^{1} d x_{2} d x_{3} \int_{0}^{\infty} b_{1} d b_{1} b_{2} d b_{2} \\
& \times\left\{h _ { n a } ^ { c } (x _ { 2 } , x _ { 3 } , b _ { 1 } , b _ { 2 }) E _ { n a } (t _ { c }) \left[\left(r_{c}-x_{3}+1\right) \phi_{2}^{A}\left(x_{2}\right) \phi_{3}^{A}\left(x_{3}\right)\right.\right. \\
& +r_{0}^{2} r_{0}^{3}\left(\phi _ { 2 } ^ { P } (x _ { 2 }) \left(\left(3 r_{c}+x_{2}-x_{3}+1\right) \phi_{3}^{P}\left(x_{3}\right)-\left(r_{c}-x_{2}-x_{3}+1\right)\right.\right. \\
& \left.\times \phi_{3}^{T}\left(x_{3}\right)\right)+\phi_{2}^{T}\left(x_{2}\right)\left(\left(r_{c}-x_{2}-x_{3}+1\right) \phi_{3}^{P}\left(x_{3}\right)+\left(r_{c}-x_{2}+x_{3}-1\right)\right. \\
& \left.\left.\left.\times \phi_{3}^{T}\left(x_{3}\right)\right)\right)\right]-E_{n a}\left(t_{d}\right)\left[\left(r_{b}+r_{c}+x_{2}-1\right) \phi_{2}^{A}\left(x_{2}\right) \phi_{3}^{A}\left(x_{3}\right)\right. \\
& +r_{0}^{2} r_{0}^{3}\left(\phi _ { 2 } ^ { P } (x _ { 2 }) \left(\left(4 r_{b}+r_{c}+x_{2}-x_{3}-1\right) \phi_{3}^{P}\left(x_{3}\right)-\phi_{3}^{T}\left(x_{3}\right)\right.\right. \\
& \left.\times\left(r_{c}+x_{2}+x_{3}-1\right)\right)+\phi_{2}^{T}\left(x_{2}\right)\left(\left(r_{c}+x_{2}+x_{3}-1\right) \phi_{3}^{P}\left(x_{3}\right)\right. \\
& \left.\left.\left.\left.-\left(r_{c}+x_{2}-x_{3}-1\right) \phi_{3}^{T}\left(x_{3}\right)\right)\right)\right] h_{n a}^{d}\left(x_{2}, x_{3}, b_{1}, b_{2}\right)\right\} \tag{14}
\end{align*}
$$

where $r_{b}=m_{b} / m_{B_{c}}, r_{c}=m_{c} / m_{B_{c}}$, and $r_{b}+r_{c} \approx 1$ for the B_{c} meson.

The general decay amplitude for $B_{c} \rightarrow M_{2} M_{3}$ decays can be written as,

$$
\begin{equation*}
\mathcal{A}\left(B_{c} \rightarrow M_{2} M_{3}\right)=V_{c b}^{*} V_{u D}\left\{f_{B_{c}} F_{f a}^{M_{2} M_{3}} a_{1}+M_{n a}^{M_{2} M_{3}} C_{1}\right\} \tag{15}
\end{equation*}
$$

where $F_{f a}^{M_{2} M_{3}}\left(M_{n a}^{M_{2} M_{3}}\right)$ come from the two factorizable(nonfactorizable) annihilation diagrams and $a_{1}=C_{1} / 3+C_{2}$.

The decay amplitudes for $B_{c} \rightarrow \pi^{+} \pi^{0}$ decays, for example, can be written as,

$$
\begin{align*}
\mathcal{A}\left(B_{c} \rightarrow \pi^{+} \pi^{0}\right)= & V_{c b}^{*} V_{u d}\left\{\left[f_{B_{c}} F_{f a}^{\pi^{+}} \pi_{\bar{u} u}^{0} a_{1}+M_{n a}^{\pi^{+}} \pi_{\bar{u} u}^{0} C_{1}\right]\right. \\
& \left.-\left[f_{B_{c}} F_{f a}^{\pi_{\overline{d d}}^{0} \pi^{+}} a_{1}+M_{n a}^{\pi_{\bar{d} d}^{0} \pi^{+}} C_{1}\right]\right\} \tag{16}
\end{align*}
$$

The Feynman decay amplitudes for $B_{c} \rightarrow P V, V P$ can be got similarly.

There are three kinds of polarizations of a vector meson, namely, longitudinal (L), normal (N), and transverse (T).

The decay amplitudes $\mathcal{M}^{(\sigma)}$ in terms of helicities, for $B_{c} \rightarrow V\left(P_{2}, \epsilon_{2}^{*}\right) V\left(P_{3}, \epsilon_{3}^{*}\right)$ decays, can be generally described by

$$
\begin{align*}
\mathcal{M}^{(\sigma)} \equiv & m_{B_{c}}^{2} \mathcal{M}_{L}+m_{B_{c}}^{2} \mathcal{M}_{N} \epsilon_{2}^{*}(\sigma=T) \cdot \epsilon_{3}^{*}(\sigma=T) \\
& +i \mathcal{M}_{T} \epsilon^{\alpha \beta \gamma \rho} \epsilon_{2 \alpha}^{*}(\sigma) \epsilon_{3 \beta}^{*}(\sigma) P_{2 \gamma} P_{3 \rho} \tag{17}
\end{align*}
$$

where the superscript σ denotes the helicity states of the two vector mesons with $L(T)$ standing for the longitudinal (transverse) component.

3. Numerical Results and Some Remarks

The masses (GeV), decay constants $(\mathrm{GeV}), \mathrm{QCD}$ scale (GeV) and B_{c} meson lifetime to be used in the numerical calculations are as follows,

$$
\begin{align*}
& \Lambda_{\overline{\mathrm{MS}}}^{(f=4)}=0.250, \quad m_{W}=80.41, \quad m_{B_{c}}=6.286, \quad f_{B_{c}}=0.489, \\
& m_{\phi}=1.02, \quad f_{\phi}=0.231, \quad f_{\phi}^{T}=0.200, m_{K^{*}}=0.892, \\
& f_{K^{*}}=0.217, \quad f_{K^{*}}^{T}=0.185, \quad m_{\rho}=0.770, \quad f_{\rho}=0.209, \\
& f_{\rho}^{T}=0.165, \quad m_{\omega}=0.782, \quad f_{\omega}=0.195, \quad f_{\omega}^{T}=0.145, \\
& m_{0}^{\pi}=1.4, \quad m_{0}^{K}=1.6, \quad m_{0}^{\eta_{q}}=1.08, \quad m_{0}^{\eta_{s}}=1.92 \text {, } \\
& m_{b}=4.8, \quad f_{\pi}=0.131, \quad f_{K}=0.16, \quad \tau_{B_{c}}=0.46 \mathrm{ps} . \tag{18}
\end{align*}
$$

The distribution amplitudes of light mesons P and V can be seen in Phys.Rev.D 81,014022 and references therein.

3.1 Numerical Results

In the following, we display the pQCD predictions of the branching ratios(BRs) for the considered $B_{c} \rightarrow M_{2} M_{3}$ decays.

1. pQCD predictions of BRs for $B_{c} \rightarrow P P$ decays
\& $\Delta S=0$ processes(in unit of 10^{-7})

$$
\begin{array}{rlrl}
\operatorname{Br}\left(B_{c} \rightarrow \pi^{+} \pi^{0}\right) & =0, & \operatorname{Br}\left(B_{c} \rightarrow \pi^{+} \eta\right) & =2.3_{-0.8}^{+1.1} \\
\operatorname{Br}\left(B_{c} \rightarrow \pi^{+} \eta^{\prime}\right) & =1.5_{-0.5}^{+0.7}, & \operatorname{Br}\left(B_{c} \rightarrow K^{+} \bar{K}^{0}\right)=2.4_{-0.8}^{+1.0} \tag{20}
\end{array}
$$

\& $\Delta S=1$ processes(in unit of 10^{-8})

$$
\begin{align*}
\operatorname{Br}\left(B_{c} \rightarrow \pi^{+} K^{0}\right) & =4.0_{-1.6}^{+2.6}, \quad \operatorname{Br}\left(B_{c} \rightarrow K^{+} \pi^{0}\right)=2.0_{-0.9}^{+1.3} \tag{21}\\
\operatorname{Br}\left(B_{c} \rightarrow K^{+} \eta\right) & =0.6_{-0.5}^{+0.6}, \quad \operatorname{Br}\left(B_{c} \rightarrow K^{+} \eta^{\prime}\right)=5.7_{-1.9}^{+1.3} \tag{22}
\end{align*}
$$

2. pQCD predictions of BRs for $B_{c} \rightarrow P V$ decays
$\diamond \Delta S=0$ processes(in unit of 10^{-7})

$$
\begin{align*}
\operatorname{Br}\left(B_{c} \rightarrow \pi^{+} \rho^{0}\right) & =1.7_{-0.4}^{+0.6}, \quad \operatorname{Br}\left(B_{c} \rightarrow \pi^{+} \omega\right)=5.8_{-2.8}^{+1.8} \tag{23}\\
\operatorname{Br}\left(B_{c} \rightarrow \bar{K}^{0} K^{*+}\right) & =1.8_{-2.1}^{+4.2} \tag{24}
\end{align*}
$$

$\diamond \Delta S=1$ processes(in unit of 10^{-8})

$$
\begin{align*}
\operatorname{Br}\left(B_{c} \rightarrow \rho^{+} K^{0}\right) & =6.1_{-3.3}^{+2.8}, \quad \operatorname{Br}\left(B_{c} \rightarrow K^{+} \rho^{0}\right)=3.1_{-1.7}^{+1.3} \tag{25}\\
\operatorname{Br}\left(B_{c} \rightarrow K^{+} \omega\right) & =2.3_{-1.2}^{+2.1} \tag{26}
\end{align*}
$$

3. pQCD predictions of BRs for $B_{c} \rightarrow V P$ decays
$\bigcirc \Delta S=0$ processes(in unit of 10^{-7})

$$
\begin{equation*}
\operatorname{Br}\left(B_{c} \rightarrow \rho^{+} \pi^{0}\right)=0.5_{-0.4}^{+0.4}, \quad \operatorname{Br}\left(B_{c} \rightarrow \rho^{+} \eta\right)=5.4_{-1.8}^{+2.3} \tag{27}
\end{equation*}
$$

$$
\operatorname{Br}\left(B_{c} \rightarrow \rho^{+} \eta^{\prime}\right)=3.6_{-1.2}^{+1.5}, \quad \operatorname{Br}\left(B_{c} \rightarrow{\overline{K^{*}}}^{0} K^{+}\right)=10.0_{-3.4}^{+1.8}
$$

$\bigcirc \Delta S=1$ processes(in unit of 10^{-8})

$$
\begin{align*}
\operatorname{Br}\left(B_{c} \rightarrow \pi^{+} K^{* 0}\right) & =3.3_{-0.6}^{+0.8}, \quad \operatorname{Br}\left(B_{c} \rightarrow K^{*+} \pi^{0}\right)=1.6_{-0.1}^{+0.5} \tag{29}\\
\operatorname{Br}\left(B_{c} \rightarrow K^{*+} \eta\right) & =0.9_{-0.2}^{+0.6}, \quad \operatorname{Br}\left(B_{c} \rightarrow K^{*+} \eta^{\prime}\right)=3.8_{-1.3}^{+1.5} \tag{30}\\
\operatorname{Br}\left(B_{c} \rightarrow \phi K^{+}\right) & =5.6_{-0.9}^{+1.7} \tag{31}
\end{align*}
$$

4. pQCD predictions of BRs for $B_{c} \rightarrow V V$ decays

4 $\Delta S=0$ processes(in unit of 10^{-6})

$$
\begin{align*}
B r\left(B_{c} \rightarrow \rho^{+} \rho^{0}\right) & =0.0 ; \tag{32}\\
\operatorname{Br}\left(B_{c} \rightarrow \rho^{+} \omega\right) & =1.1_{-0.0}^{+0.4}\left(92.9_{-0.1}^{+2.0} \%\right) ; \tag{33}\\
B r\left(B_{c} \rightarrow{\overline{K^{*}}}^{0} K^{*+}\right) & =1.0_{-0.5}^{+0.8}\left(92.0_{-7.1}^{+3.6} \%\right) ; \tag{34}
\end{align*}
$$

A $\Delta S=1$ processes(in unit of 10^{-7})

$$
\begin{align*}
\operatorname{Br}\left(B_{c} \rightarrow K^{* 0} \rho^{+}\right) & =0.6_{-0.1}^{+0.2}\left(94.9_{-1.4}^{+2.0} \%\right), \tag{35}\\
\operatorname{Br}\left(B_{c} \rightarrow K^{*+} \rho^{0}\right) & =0.3_{-0.1}^{+0.1}\left(94.9_{-1.4}^{+2.00}\right) ; \tag{36}\\
\operatorname{Br}\left(B_{c} \rightarrow K^{*+} \omega\right) & =0.3_{-0.2}^{+0.0}\left(94.8_{-1.2}^{+1.1} \%\right), \tag{3}\\
\operatorname{Br}\left(B_{c} \rightarrow K^{*+} \phi\right) & =0.5_{-0.3}^{+0.1}\left(86.4_{-9.1}^{+4.9} \%\right) . \tag{38}
\end{align*}
$$

3.2 Some Remarks

From our numerical evaluations and phenomenological analysis, we find the following results:

- Generally, CKM factor $\left|V_{u d} / V_{u s}\right|^{2} \sim 19 \Longrightarrow \operatorname{Br}\left(B_{c} \rightarrow M_{2} M_{3}\right)_{\Delta S=0}>$ $\operatorname{Br}\left(B_{c} \rightarrow M_{2} M_{3}\right)_{\Delta S=1}$ as expected. Of course, for certain channels, this enhancement could be cancelled partly by the differences between the magnitude of individual decay amplitude.
- $\operatorname{Br}\left(B_{c} \rightarrow \pi^{+} \pi^{0}, \rho^{+} \rho^{0}\right)=0$; In fact, these two channels are forbidden, even if with final state interactions. Any other nonzero data for these two channels may indicate the effects of exotic new physics.
- Only tree operators $\Longrightarrow C P\left(B_{c} \rightarrow M_{2} M_{3}\right)=0$.
- $\operatorname{Br}\left(B_{c} \rightarrow M_{2} M_{3}\right)_{\mathrm{pQCD}} \in\left[10^{-8}, 10^{-6}\right] ; \operatorname{Br}\left(B_{c} \rightarrow \bar{K}^{* 0} K^{+}, \bar{K}^{* 0} K^{*+}, \rho^{+} \omega\right)_{\mathrm{pQCD}}$
$\sim 10^{-6}$ can be measured at the LHC experiment [Phys. Rev. D 80-114031].

Table 1: The pQCD predictions of branching ratios for $B_{c} \rightarrow \phi K^{+}$and $B_{c} \rightarrow \bar{K}^{(*) 0} K^{(*)+}$ modes. As a comparison, the numerical results as given in [Phys. Rev. D 80-114031] are also listed in the last two columns.

Channels	pQCD Predictions	SU(3) ${ }_{\mathrm{F}}$ Symmetry	OGE model
$\operatorname{Br}\left(B_{c} \rightarrow \phi K^{+}\right)$	$5.6_{-0.9}^{+1.6} \times 10^{-8}$	$\mathcal{O}\left(10^{-7} \sim 10^{-8}\right)$	5×10^{-9}
$\operatorname{Br}\left(B_{c} \rightarrow \bar{K}^{0} K^{+}\right)$	$2.4_{-0.6}^{+0.7} \times 10^{-7}$	$\mathcal{O}\left(10^{-6}\right)$	6.3×10^{-8}
$\operatorname{Br}\left(B_{c} \rightarrow \bar{K}^{0} K^{*+}\right)$	$1.8_{-2.1}^{+4.2} \times 10^{-7}$	-	-
$\operatorname{Br}\left(B_{c} \rightarrow \bar{K}^{* 0} K^{+}\right)$	$1.0_{-0.3}^{+0.2} \times 10^{-6}$	$\mathcal{O}\left(10^{-6}\right)$	9.0×10^{-8}
$\operatorname{Br}\left(B_{c} \rightarrow \bar{K}^{* 0} K^{*+}\right)$	$1.0_{-0.5}^{+0.8} \times 10^{-6}$	$\mathcal{O}\left(10^{-6}\right)$	9.1×10^{-8}

- In Table I, we find that $\operatorname{Br}\left(B_{c} \rightarrow \phi K^{+}, \bar{K}^{* 0} K^{+} \text {and } \bar{K}^{* 0} K^{*+}\right)_{\mathrm{pQCD}} \approx$ $\operatorname{Br}\left(B_{c} \rightarrow \phi K^{+}, \bar{K}^{* 0} K^{+} \text {and } \bar{K}^{* 0} K^{*+}\right)_{\mathrm{SU}(3)_{\mathrm{F}} \text { Symmetry }} \approx 10 \times \operatorname{Br}\left(B_{c} \rightarrow\right.$
$\phi K^{+}, \bar{K}^{* 0} K^{+}$and $\left.\bar{K}^{* 0} K^{*+}\right)_{\mathrm{OGE} \text { Model } ;} \operatorname{Br}\left(B_{c} \rightarrow \bar{K}^{0} K^{+}\right)_{\mathrm{pQCD}}<\operatorname{Br}\left(B_{c} \rightarrow\right.$ $\left.\bar{K}^{0} K^{+}\right)_{\mathrm{SU}(3)_{\mathrm{F}} \text { Symmetry }}$.
- The component $\bar{u} u+\bar{d} d$ contribute to the same decay amplitudes while the different mixing coefficients, i.e., $\cos \phi$ and $\sin \phi$ lead to the similar $\operatorname{Br}\left(B_{c} \rightarrow\left(\pi^{+}, \rho^{+}\right)\left(\eta, \eta^{\prime}\right)\right)$.
- Rather different from the pattern of similar $\operatorname{Br}\left(B_{c} \rightarrow\left(\pi^{+}, \rho^{+}\right)\left(\eta, \eta^{\prime}\right)\right)$, $\operatorname{Br}\left(B_{c} \rightarrow K^{+} \eta^{\prime}\right) \sim 10 \times \operatorname{Br}\left(B_{c} \rightarrow K^{+} \eta\right)$: opposite sign for η_{q} and η_{s} term, different coefficients \Longrightarrow destruction for $\operatorname{Br}\left(B_{c} \rightarrow K^{+} \eta\right)$ while construction for $\operatorname{Br}\left(B_{c} \rightarrow K^{+} \eta^{\prime}\right)$, the similar pattern of $\operatorname{Br}\left(B \rightarrow K \eta^{(\prime)}\right)$.
- Factorizable contributions of η_{s} term $\Longrightarrow \operatorname{Br}\left(B_{c} \rightarrow K^{*+} \eta^{\prime}\right) \approx 4 \operatorname{Br}\left(B_{c} \rightarrow\right.$ $\left.K^{*+} \eta\right) \sim 3.8 \times 10^{-8}$.
- $\operatorname{Br}\left(B_{c} \rightarrow V V\right) \in\left[10^{-8}, 10^{-7}\right]$ except for $\operatorname{Br}\left(B_{c} \rightarrow \bar{K}^{* 0} K^{*+}, \rho^{+} \omega\right) \sim 10^{-6}$; $f_{L}\left(B_{c} \rightarrow V V\right) \sim 95 \%$ within errors except for $f_{L}\left(B_{c} \rightarrow \phi K^{*+}\right) \sim 86 \%$.
- Some simple relations in the limit of exact $\mathrm{SU}(3)_{\mathrm{F}}$ symmetry,

$$
\begin{align*}
\mathcal{A}\left(B_{c} \rightarrow K^{0} \pi^{+}\right) & =\sqrt{ } 2 \mathcal{A}\left(B_{c} \rightarrow K^{+} \pi^{0}\right)=\lambda \mathcal{A}\left(B_{c} \rightarrow K^{+} \bar{K}^{0}\right), \tag{39}\\
\mathcal{A}\left(B_{c} \rightarrow K^{* 0} \pi^{+}\right) & =\sqrt{2} \mathcal{A}\left(B_{c} \rightarrow K^{*+} \pi^{0}\right)=\lambda \mathcal{A}\left(B_{c} \rightarrow \bar{K}^{* 0} K^{+}\right), \tag{40}\\
\mathcal{A}\left(B_{c} \rightarrow \rho^{+} K^{0}\right) & =\sqrt{2} \mathcal{A}\left(B_{c} \rightarrow \rho^{0} K^{+}\right)=\lambda \mathcal{A}\left(B_{c} \rightarrow K^{*+} \bar{K}^{0}\right), \tag{41}\\
(-1)^{\ell} \mathcal{A}\left(B_{c}^{+} \rightarrow \rho^{+} K^{* 0}\right) & =(-1)^{\ell} \sqrt{2} \mathcal{A}\left(B_{c}^{+} \rightarrow \rho^{0} K^{*+}\right)=\lambda \mathcal{A}\left(B_{c} \rightarrow K^{*+}(\overline{4} 2)\right.
\end{align*}
$$

where $\lambda=V_{u s} / V_{u d} \approx 0.2$ and $\ell=0,1,2$.

- Frankly speaking, most $\operatorname{Br}\left(B_{c} \rightarrow M_{2} M_{3}\right) \ll 10^{-6}$ still hard to observe even at LHC; Observation \Longrightarrow large non-perturbative contribution or a signal for new physics beyond the SM.
- Sources of uncertainties: chiral mass m_{0}^{P}, values of Gegenbauer moments a_{i} and charm quark mass m_{c}, etc. Any progress in reducing the error will help us to improve the precision of the pQCD predictions.

4. Summary

- $\operatorname{Br}\left(B_{c} \rightarrow M_{2} M_{3}\right)_{\mathrm{pQCD}} \in\left[10^{-8}, 10^{-6}\right] \approx \operatorname{Br}\left(B_{c} \rightarrow M_{2} M_{3}\right)_{\mathrm{SU}(3)_{\mathrm{F}} \text { Symmetry }} ;$
- $V_{u d} \sim 1, V_{u s} \sim 0.22 \Longrightarrow \operatorname{Br}\left(B_{c} \rightarrow M_{2} M_{3}\right)_{\Delta S=0}>\operatorname{Br}\left(B_{c} \rightarrow M_{2} M_{3}\right)_{\Delta S=1}$;
- Analogous to $B \rightarrow K \eta^{(\prime)}$ decays, $\operatorname{Br}\left(B_{c} \rightarrow K^{+} \eta^{\prime}\right) \sim 10 \times \operatorname{Br}\left(B_{c} \rightarrow K^{+} \eta\right)$;
- $f_{L}\left(B_{c} \rightarrow V V\right) \sim 95 \%$ except for $f_{L}\left(B_{c} \rightarrow \phi K^{*+}\right) \sim 86 \%$;
- Only tree operators $\Longrightarrow C P\left(B_{c} \rightarrow M_{2} M_{3}\right)=0$;
- large theoretical uncertainties from input parameters: m_{0}^{P}, a_{i}, m_{c}, etc.;
- possible long-distance contributions beyond the scope of this work.

Thanks For Your Attention!

[^0]: ${ }^{1}$ We will use M_{2} and M_{3} to denote the two final state light mesons respectively, unless otherwise stated.

