

Gravity as Entropic Force?

Bo-Qiang Ma (马伯强)

Peking University (北京大学)

2010高能物理年会 April 18, 2010,南昌大学

In collaboration with Xiao-Gang He

X.-G. He & B.-Q. Ma, Black Holes and Photons with Entropic Force, arXiv: 1003:1625 X.-G. He & B.-Q. Ma, Quantization of Black Holes, arXiv: 1003:2510

Newton's laws of motion and gravity

Newton's theory unified description of motions for observable objects on the Earth and in the sky. It only states how the laws work, but not why they work.

Einstein's theory of general relativity

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Gravity from curvature of space and time

Four kinds of forces (四种相互作用力)

	No.			9
	Gravity	Weak (Electro	Electromagnetic weak)	Strong
Carried By	Graviton (not yet observed)	w ⁺ w ⁻ z ^o	Photon	Gluon
Acts on	AII	Quarks and Leptons	Quarks and Charged Leptons and W ⁺ W ⁻	Quarks and Gluons

No confirmed evidence for graviton!

Unification of gravity with other interactions

Unification of gravity with quantum theory

Dream of physicists for decades

强:电磁:弱:引力=1:10⁻²:10⁻⁶:10⁻⁴⁰

Many attempts: extra-dimension, string, supersymmetry

Erik Verlinde

Erik P. Verlinde, ``On the Origin of Gravity and the Laws of Newton", arXiv:1001.0785 [hep-th]

A conceptual theory that describes gravity as an entropic force

Erik Peter Verlinde (born 21 January 1962, Woudenberg) is a Dutch theoretical physicist and string theorist. The Verlinde formula, which is important in conformal field theory and topological field theory, is named after him. His research deals with string theory, gravity, black holes and cosmology. Currently he works at the Institute for Theoretical Physics at the University of Amsterdam..

Thanu Padmanabhan

T.Padmanabhan,

``Thermodynamical Aspects of Gravity: New insights," arXiv:0911.5004 [gr-qc], Rep. Prog. Phys. 73, 046901 (2010)

T.Padmanabhan,

`Equipartition of energy in the horizon degrees of freedom and the emergence of gravity," arXiv:0912.3165 [gr-qc]. A number of publications on gravity as an emergent force

Thanu Padmanabhan (born 10 March 1957) is an Indian theoretical physicist. He is currently Distinguished Professor at the Inter-University Centre for Astronomy and Astrophysics, (IUCAA) at Pune, India. His principal fields of research are Cosmology and the interface between Gravity and Quantum theory.

Reaction from physics society

Gerard 't Hooft: *Erik is stressing real physical concepts like mass and force, not just fancy abstract mathematics. That's encouraging from my perspective as a physicist.*"

Citations of Verlinde's paper: 58 by April 17, 2010 Discussions Application to Expansion, Inflation, Acceleration in Cosmology. Acceleration without dark energy

circular reasoning? $A \to B \to A$

consistency?

Needs to be checked

Any new predictions?

Entropic force of thermodynamics

Polymer molecule

Entropic force due to the tendency for entropy increase

Examples of entropic force?

Rubber band

Hooke's law F = -kx

Entropic force due to the tendency for entropy increase

Verlinde's conjecture

 $\Delta S = 2\pi k \frac{mc}{\hbar} \Delta x$

Change of entropy on the holographic screen due to a linear displacement Δx of a particle with mass m

Unruh temperature

$$T = T_U = \frac{\hbar a}{2\pi ck}$$

a is the acceleration experienced by the test particle

Newton's second law of motion

The law is derived from Verlinde's conjecture, Unruh temperature, and entropic force in thermodynamics

Temperature from equipartition rule

Equipartition rule to get T, holographic principle to get N

The derivation of Newton's gravity law

Equipartition rule+holographic principle+Verlinde's conjecture to get gravity law

The derivation of Newton's gravity law:

another version by He & Ma, arXiv:1003.1625

Equipartition rule+holographic principle+Unruh temperature + second motion law to get gravity law

Remarks

- Newton's laws are derived in an intuitive way, just so simple yet convincing! (From news)
- Many knowledge needed than just two theorems in Newton's theory.
- The reason it works, might due to circular reasoning. $A \rightarrow B \rightarrow A$
- Is this really a scientific way of thinking, or something belongs to pseudoscience?

Checking the consistency with black hole knowledge

- Knowledge of holographic principle are used, entropy change onto holographic screen, or the horizon surface, by Verlinde's conjecture.
- Unruh temperature is used.
- Surface area divided by Planck area to count partition number N.
- However, the entropy formula of black hole is not used. Does the derivation consistent with black hole entropy?

Holographic principle by 't Hooft and Susskind

Information of black holes are encoded at the surface, call event horizon or holographic screen.

Entropy of black holes

by Bekenstein

$$S = \frac{kA}{4l_P^2}$$

 $A = 4\pi R^2$

Planck length
$$l_P = \sqrt{\frac{G\hbar}{c^3}} = 1.61624(8) \times 10^{-35} \, m \quad l_P^2 = \frac{G\hbar}{c^3}$$

Black entropy entropy is proportional to surface area, with factor fixed by Hawking later.

Verlinde's conjecture versus black hole entropy change

Change of entropy on the holographic screen due to the radial increase ΔR of the black hole with radius R_H

Consistency between Verlinde's conjecture & black hole entropy change

X.-G. He & B.-Q. Ma, arXiv: 1003:1625

A new rule is suggested regarding entropy change in different dimension D by a linear displacement ΔI .

Extension to massless case

X.-G. He & B.-Q. Ma, arXiv: 1003:1625

Extension of Verlinde's conjecture to massless case

Entropic force for photon

 $F\Delta x = T\Delta S$

 $E_{\gamma}=m_{\gamma}c^2$ X.-G. He & B.-Q. Ma, arXiv: 1003:1625

As if photon has mass m_{γ} , which leads to gravity Red/blue shift, bending of light as equivalence principle of Einstein.

The concept of holographic screen can apply at any r for Newtonian gravity

No-hair theorem for black hole

It is also called three-hair theorem in China.

For a black hole without Q and J

It is only one-hair now! How can we play with only one hair?

$$R = \frac{2GM}{c^2} \quad A = 4\pi R^2 \quad \lambda = \frac{\hbar}{Mc}$$

$$R\lambda = 2l_P^2$$

One hair black hole

$$l_P = \sqrt{\frac{G\hbar}{c^3}} = 1.61624(8) \times 10^{-35} \, m$$

There is only one independent parameter for black hole quanties!

Bohr's one-electron atom model

Quantization of atom

Quantization of black holes

$$2\pi R = \tilde{n}\lambda$$
, or $R = \tilde{n}\lambda$
 $\tilde{n} = 2n$

$$\pi R = n\lambda$$
, or $R = 2n\lambda$

X.-G. He & B.-Q. Ma, arXiv: 1003:2510

Take the black hole as a whole matter-wave to quantize

Properties of quantized black holes

X.-G. He & B.-Q. Ma, arXiv: 1003:2510

A elegant and simple way of quantization. gravity from quantum theory!

Surface accerelation and temperature are also quantized

$$a_n = \frac{GM_n}{R_n^2} = \frac{c^2}{4\sqrt{n}l_P}$$

$$T_n = \frac{\hbar a_n}{2\pi ck} = \frac{M_P c^2}{8\pi \sqrt{nk}}$$

X.-G. He & B.-Q. Ma, arXiv: 1003:2510

Surface gravity is quantized!

The entropy is also quantized!

$$S = 4\pi kn$$
$$\Delta S = 2\pi kD\frac{\Delta l}{\lambda}$$
$$\Delta S = 4\pi k\frac{\Delta R}{\lambda} = 4\pi k\frac{R\Delta R}{2l_P^2} = \frac{k\Delta A}{4l_P^2}$$

X.-G. He & B.-Q. Ma, arXiv: 1003:2510

In agreement with the new rule to unify black hole entropy and Verlinde's conjecture leading to entropic force.

The quantized entropy is in agreement with conventional black hole property

$$S = 4\pi k \frac{R^2}{4l_P^2} + S_0 = \frac{kA}{4l_P^2} + S_0$$

X.-G. He & B.-Q. Ma, arXiv: 1003:2510

 $S_0=0$ as no area no entropy

Quantized entropy equals quantization of entropy change

$$\Delta S = 2\pi k D \frac{\Delta l}{\lambda}$$

X.-G. He & B.-Q. Ma, arXiv: 1003:2510

We suggest a new way to unify gravity with quantum theory!

Transition between nearby quantized states

$$\Delta E = E_{n+1} - E_n = (\sqrt{n+1} - \sqrt{n})M_P c^2 = \frac{M_P c^2}{\sqrt{n+1} + \sqrt{n}}$$
$$\Delta E_{\max} = (\sqrt{2} - 1)M_P c^2$$
$$\Delta E \approx \frac{M_P c^2}{2\sqrt{n}} \to 0 \text{ for } n \to \infty$$

X.-G. He & B.-Q. Ma, arXiv: 1003:2510

We predict the existence of primordial black holes ranging from Planck scale both in size and energy to big ones in size but with low energy behaviors

Conclusions

- 1. We suggested a new rule that unifies the black hole entropy formula and Verlinde's conjecture for gravity as entropic force.
- 2. We revealed the entropic force on photon.
- *3. We quantized black hole with an intuitive and simple manner, and this can explain gravity as entropic force .*
- 4. Our approach suggests a way to unify gravity with quantum theory.