Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking

Shao-Feng Ge

(gesf02@mails.thu.edu.cn)

Center for High Energy Physics, Tsinghua Univeristy

2010-4-18

Collaborators: Hong-Jian He & Fu-Rong Yin Based on arXiv:1001.0940 (to appear in JCAP)

Motivations	Construction & Predictions	Leptogenesis 000	Hidden Symmetry	Summary 00	Spare 000000
Decen	nber, 2009			arXiv: 100	1.0940

Common Origin of Soft $\mu - \tau$ and CP Breaking in Neutrino Seesaw and the Origin of Matter

Shao-Feng Ge*, Hong-Jian He[†], Fu-Rong Yin[‡]

Center for High Energy Physics and Institute of Modern Physics, Tsinghua University, Beijing 100084, China

and

Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Neutrino oscillation data strongly support $\mu-\tau$ symmetry as a good approximate flavor symmetry of the neutrino sector, which has to appear in any viable theory for neutrino mass-generation. The $\mu-\tau$ breaking is not only small, but also the source of Dirac CP-violation. We conjecture that both discrete $\mu-\tau$ and CP symmetries are fundamental symmetries of the seesaw Lagrangian (respected by interaction terms), and they are only softly broken, arising from a common origin via a unique

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
0					
Experimental Data					

Current Neutrino Oscillation Data

u-Parameters	Lower Limit (2σ)	Best Value	Upper Limit (2σ)
$\Delta m^2_{21}(10^{-5}{ m eV}^2)$	7.31	7.67	8.01
$ \Delta m_{31}^2 $ (10 ⁻³ eV ²)	2.19	2.39	2.66
$\sin^2\theta_{12}\ (\theta_{12})$	0.278 (31.8°)	0.312 (34.0°)	0.352 (36.4°)
$\sin^2\theta_{23} \ (\theta_{23})$	0.366 (37.2°)	0.466 (43.0 °)	0.602 (50.9°)
$\sin^2 \theta_{13} (\theta_{13})$	0 (0°)	0.016 (7.3 °)	0.036 (10.9°)

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
0•					
Approximating Syn	nmetry				

Evidence of $\mu - au$ Symmetry at Low Energy

• Two small deviations (2σ level):

 $-7.8^{\circ} < \theta_{23} - 45^{\circ} < 5.9^{\circ} \qquad 0 < \theta_{13} < 10.9^{\circ}$

with Best Fit Value: $\theta_{23} - 45^{\circ} = -2.0^{\circ} \& \theta_{13} = 7.3^{\circ}$.

• Zeroth Order Approximation:

$$heta_{23}=45^\circ,\qquad heta_{13}=0^\circ.$$

with Vanishing Dirac CP Phase & $\mu - \tau$ Symmetric Mass Matrix:

$$\mathcal{M}^{(0)}_{
u}=egin{pmatrix} A & \mathbf{B} & \mathbf{B} \ \mathbf{C} & D \ \mathbf{C} & \mathbf{C} \end{pmatrix}$$

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
	0000000				
Lagrangian, Sym	metry & Breaking				

Leptogenesis & Minimal Seesaw

- Baryon Asymmetry ⇒ Leptogenesis ⇒ Seesaw
- Minimal Seesaw = SM + Two Heavy Majorana Neutrinos

$$\mathcal{N}^{\mathcal{T}} = egin{pmatrix} \mathcal{N}_{\mu} & \mathcal{N}_{ au} \end{pmatrix}$$

• Lagrangian associated with Neutrino Masses:

$$\mathcal{L} = -\overline{L}_L Y_\ell \Phi \ell_R - \overline{L}_L \mathbf{Y}_
u \widetilde{\Phi} \mathcal{N} + rac{1}{2} \mathcal{N}^\mathsf{T} \mathbf{M}_R \mathcal{C} \mathcal{N}$$

M_R is Soft & High

Dirac Mass Term:

$$m_D = Y_
u \langle \widetilde{\Phi}
angle$$

• is the ordinary SM Higgs Doublet, NO CP!

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare 000000
Lagrangian, Syı	mmetry & Breaking				
Мо	del Assignment	at Zero	th Order		
٥	Minimal Seesaw & µ	$\iota- au$ & CP	Symmetries:		
	$T^{(3)}_{\mu au}=egin{pmatrix} 1 \ 1 \ \end{pmatrix}$	$\begin{pmatrix} & & \\ & & 1 \\ & 1 \end{pmatrix}$	$T^{(2)}_{\mu au}=egin{pmatrix} 1\ 1 \end{pmatrix}$		
٥	${\sf T}_{\mu au}^{(3)}{\sf m}_{\sf D}{\sf T}_{\mu au}^{(2)}\equiv$	m _D &	$T_{\mu au}^{(2)}M_{R}T_{\mu au}^{(2)}\equiv$	M _R :	
	$m_D = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix}$	$\begin{pmatrix} \mathbf{a} \\ \mathbf{c} \\ \mathbf{b} \end{pmatrix}, \qquad M$	$R = \begin{pmatrix} \mathbf{m}_{22} & \mathbf{m}_{23} \\ \mathbf{m}_{23} & \mathbf{m}_{33} \end{pmatrix}$	3 3	
	with all elements bein	g REAL .			
۲	Seesaw Mass Matrix	for light new $\frac{2a^2}{M}$	utrinos ($M_{\pm} \equiv r$	$(m_{22} \pm m_{23})$	

 $M_{\nu}^{(0)} \approx m_{\rm D} M_{\rm R}^{-1} m_{\rm D}^{\rm T} = \begin{pmatrix} M_{+} & M_{+} & M_{+} \\ \frac{1}{2} \left[\frac{(b+c)^{2}}{M_{+}} + \frac{(b-c)^{2}}{M_{-}} \right] & \frac{1}{2} \left[\frac{(b+c)^{2}}{M_{+}} - \frac{(b-c)^{2}}{M_{-}} \right] \\ \frac{1}{2} \left[\frac{(b+c)^{2}}{M_{+}} + \frac{(b-c)^{2}}{M_{-}} \right] \end{pmatrix}$ Shao-Feng Ge, TUHEP; Nanchang, 2010-4-18 Puzzles of Neutrino Mixing and Anti-Matter

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
	0000000				
Lagrangian, Syn	nmetry & Breaking				
Con	nmon $\mu- au$ &	CP Soft	Breaking		

- Approximate $\mu \tau$ symmetry @ Zeroth-Order \Rightarrow vanishing θ_{13} & Dirac CP Phase δ_{D} ;
- So, $\mu \tau$ breaking should be Small & Simultaneously generates $\delta_{D} \Rightarrow \mu \tau$ & Dirac CP broken by a Common Origin.
- Natural & Simple, so Tempting, to expect a Common Origin for all CP Phases;
- Conjecture: μ τ & CP Symmetries are Softly broken from a Common Origin which is Uniquely determined as:

$$M_{R} = m_{22} \begin{pmatrix} 1 & R \\ R & 1 - \zeta e^{i\omega} \end{pmatrix} \qquad \left(R \equiv \frac{m_{23}}{m_{22}} \right)$$

Note: $\mu - \tau$ & CP Recover with $\zeta \rightarrow 0$.

• Hard Symmetry Breaking? (Another paper in preparation)

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
	00000000				
Lagrangian, Syn	nmetry & Breaking				
Eve	acted Concorn	oncoc			
Exp	ected Consequ	ences			

- $\delta_{a} (\equiv \theta_{23} 45^{\circ}) \& \delta_{x} (\equiv \theta_{13})$
 - Common Origin & Linear $\Rightarrow \delta_a \propto \delta_x$;
 - Once θ_{23} well measured \Rightarrow Predict θ_{13} !
- Dirac CP Phase δ_D & Majorana CP Phases
 - Common Origin ⇒ Correlated;
 - Once Dirac CP Phase δ_{D} is measured $\Rightarrow J \& M_{ee}$;
 - Vice Versa, Constrains from Leptogenesis.
- Normal Hierarchy with $m_1 = 0$.
 - Fully reconstructed mass spectrum \Rightarrow M_{ee};
 - Vice Versa.

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
	00000000				
Solving Low Energy	y Parameters				

Neutrino Mass Matrix from Seesaw

Expanding the mass matrix M_{ν} in terms of **r** & ζ up to Linear Order:

$$\mathcal{M}_{
u} = \mathsf{m}_{\mathsf{D}}\mathsf{M}_{\mathsf{R}}^{-1}\mathsf{m}_{\mathsf{D}}^{\mathsf{T}} \equiv \mathsf{M}_{oldsymbol{
u}}^{(0)} + \mathsf{M}_{oldsymbol{
u}}^{(1)} + \mathcal{O}(r^2, r\zeta, \zeta^2)$$

with:

$$\begin{split} \mathsf{M}_{\nu}^{(0)} &= \frac{(\mathsf{b}-\mathsf{c})^2}{(2-\mathsf{X})\mathsf{M}_1^{(0)}} \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 \\ & 1 \end{pmatrix} & \text{with} & \begin{array}{c} \text{an Overall Phase} \\ \textbf{(No Physical Consequence)} \\ \\ \mathsf{M}_{\nu}^{(1)} &= \frac{\mathsf{r}}{(2-\mathsf{X})^2\mathsf{M}_1^{(0)}} \begin{pmatrix} (2-\mathsf{X})^2\mathsf{a}^2 & (2-\mathsf{X})[(1-\mathsf{X})\mathsf{b}+\mathsf{c}]\mathsf{a} & (2-\mathsf{X})[\mathsf{b}+(1-\mathsf{X})\mathsf{c}]\mathsf{a} \\ & [(1-\mathsf{X})\mathsf{b}+\mathsf{c}]^2 & (1-\mathsf{X})(\mathsf{b}+\mathsf{c})^2 + \mathsf{X}^2\mathsf{b}\mathsf{c} \\ & & [\mathsf{b}+(1-\mathsf{X})\mathsf{c}]^2 \end{pmatrix} \equiv \begin{pmatrix} \delta m_{\mathsf{ee}}^{(1)} & \delta m_{\mathsf{e}\mu}^{(1)} & \delta m_{\mu\mu}^{(1)} \\ & \delta m_{\mu\mu}^{(1)} & \delta m_{\mu\tau}^{(1)} \\ & \delta m_{\tau\tau}^{(1)} \end{pmatrix} \end{split}$$

where $r \equiv 1 - R \& X \equiv \frac{\zeta}{r} e^{i\omega}$ and $M_1^{(0)}$ is the Zeroth-Order of the Lightest Eigenvalue of M_R :

$$\mathsf{M}_{1}^{(0)} = \mathsf{r} \; \mathsf{M}_{22}$$

Expanding Pacanetrusted Mass Matrix					
Solving Lo	ow Energy Parameters				
00		000	0000	00	000000
Mativatio	Construction & Prodiction	ac Lontogonocic	Hiddon Symmotry	Summary	Spara

Expanding Reconstructed Mass Matrix

$$\mathsf{M}_{oldsymbol{
u}} = \mathsf{V}_{oldsymbol{
u}}^* \mathsf{D}_{oldsymbol{
u}} \mathsf{V}_{oldsymbol{
u}}^\dagger pprox \mathsf{M}_{oldsymbol{
u}}^{(0)} + \mathsf{M}_{oldsymbol{
u}}^{(1)}$$

with:

$$\mathcal{M}_{\nu}^{(0)} = \frac{1}{2} m_{30} \mathbf{e}^{-2i\alpha_{20}} \begin{pmatrix} 0 & 0 & 0 \\ & 1 & -1 \\ & & 1 \end{pmatrix}, \qquad \mathcal{M}_{\nu}^{(1)} \equiv \begin{pmatrix} \delta m_{ee}^{(1)} & \delta m_{e\mu}^{(1)} & \delta m_{e\tau}^{(1)} \\ & \delta m_{\mu\mu}^{(1)} & \delta m_{\mu\tau}^{(1)} \\ & & \delta m_{\tau\tau}^{(1)} \end{pmatrix}$$

Note: Overall CP Phase (No Physical Consequences!!!) For Linear Order:

$$\begin{split} \delta m_{e\tau}^{(1)} &= m_{30} s_{s}^{2} e^{-2i(\overline{\alpha}_{10} - \phi_{23})} y \\ \delta m_{\mu\mu}^{(1)} &= \frac{1}{2} m_{30} e^{-2i\overline{\alpha}_{20}} \left[c_{s}^{2} e^{-2i\phi_{23}} y + z + 2\delta_{a} - 2i\delta\overline{\alpha}_{2} \right] \\ \delta m_{\tau\tau}^{(1)} &= \frac{1}{2} m_{30} e^{-2i\overline{\alpha}_{20}} \left[c_{s}^{2} e^{-2i\phi_{23}} y + z - 2\delta_{a} - 2i\delta\overline{\alpha}_{3} \right] \\ \delta m_{e\mu}^{(1)} &= \frac{1}{\sqrt{2}} m_{30} e^{-i(\overline{\alpha}_{10} + \overline{\alpha}_{20})} \left[-c_{s} s_{s} e^{-2i\phi_{23}} y + e^{-i\delta_{D}} \delta_{x} \right] \\ \delta m_{e\tau}^{(1)} &= \frac{1}{\sqrt{2}} m_{30} e^{-i(\overline{\alpha}_{10} + \overline{\alpha}_{20})} \left[-c_{s} s_{s} e^{-2i\phi_{23}} y - e^{-i\delta_{D}} \delta_{x} \right] \\ \delta m_{\mu\tau}^{(1)} &= \frac{1}{2} m_{30} e^{-2i\overline{\alpha}_{20}} \left[c_{s}^{2} e^{-2i\phi_{23}} y - z + i(\delta\overline{\alpha}_{2} + \delta\overline{\alpha}_{3}) \right] \end{split}$$

Shao-Feng Ge, TUHEP;

(1))

Motivations Construction & Predictions 00 00000000	000	0000	00	Spare 00000
Predictions				
Solutions & Pred	ictions			
Zeroth-Order:	2(<i>b</i> –	$(c)^2$ $2i\overline{\alpha}_{20}$	r 2 – X	
$m_{10} = m_{20} = 0,$	$m_{30} = \frac{1}{ (2 - X) }$	$\frac{1}{ M_{10} }, e^{-1} = 0$	r 2 - X	
Overall CP Phase (No Physical C	onsequence!)		
• Linear Order: δ_x =	$= \frac{\sqrt{2}}{2[\zeta^2 - 4r\zeta c]}$	$\frac{\langle \overline{y}s_{s}\zeta}{\cos\delta_{D}+4r^{2}}\right ^{1/4}$		
δ_{a} =	$= \frac{-\sqrt{y}c}{2\left[\zeta^2 - 4r\zetac\right]}$	$\frac{c_s \cos \delta_D \zeta}{\cos \delta_D + 4r^2]^{1/4}}$		
• Correlations: $\delta_x = -\frac{t}{c}$	$\frac{\sin \theta_s}{\cos \delta_p} \delta_a =$	$\Rightarrow \delta_{x} \geq tan$	$ heta_{s} \delta_{a} $	
• Solar Mixing A	ngle θ_s Dictat	ed by Dirac Mas	s Matrix	
<i>m</i> _D :	$ an heta_{ m s} =$	$-\frac{\sqrt{2}a}{1}$		
Will be elabora	ted later.	D + C		

Motivations	Construction & Predictions	Leptogenesis ●○○	Hidden Symmetry	Summary 00	Spare 000000
Baryon Asymmetr	у				
Lept	ogenesis				

• The Universe contains 4% Matter:

$$\eta_B\equiv \frac{n_B-n_{\overline{B}}}{n_{\gamma}}=(6.21\pm0.16)\times10^{-10}$$

where n_{γ} is Photon Number Density & n_B is Baryon Number Density.

• Leptogenesis Mechanism generates $\eta_{\rm B}$ from Lepton Asymmetry Y_L via Sphaleron Interactions which violate B + L but preserve B - L: $\eta_{\rm B} = \frac{\xi}{f} N_{\rm B-L}^{\rm f} = -\frac{\xi}{f} N_{\rm L}^{\rm f} = -\frac{3\xi}{4f} \kappa_{\rm f} \epsilon_{\rm f}$

where $\xi\equiv(8N_F+4N_H)/(22N_F+13N_H)=28/79$ for SM, and $f=N_{\gamma}^{rec}/N_{\gamma}^*$ is the $\emph{Dilution Factor.}$

• Efficiency Factor:

$$\kappa_{\rm f}^{-1} \approx \left(\frac{\overline{m}_1}{0.55 \times 10^{-3} {\rm eV}}\right)^{1.16} + \frac{3.3 \times 10^{-3} {\rm eV}}{\overline{m}_1}$$

with $\overline{m}_1 \equiv (\widetilde{m}_{\rm b}^{\dagger} \widetilde{m}_{\rm D})_{11} / M_1 \ (\widetilde{m}_{\rm D} \equiv m_{\rm D} V_{\rm R}).$

Motivations	Construction & Predictions	Leptogenesis ○●○	Hidden Symmetry	Summary	Spare
CP Asymmetry	Parameter 😋				
CP	Asymmetry Pa	rameter	F 1		

• **CP** Asymmetry Parameter
$$\epsilon_1$$
:

$$\epsilon_1 \equiv \frac{\Gamma[N_1 \to \ell H] - \Gamma[N_1 \to \overline{\ell}H^*]}{\Gamma[N_1 \to \ell H] + \Gamma[N_1 \to \overline{\ell}H^*]} = \frac{1}{4\pi v^2} F\left(\frac{M_2}{M_1}\right) \frac{\Im \left\{\left[\left(\tilde{m}_D^{\dagger} \tilde{m}_D\right)_{12}\right]^2\right\}}{\left(\tilde{m}_D^{\dagger} \tilde{m}_D\right)_{11}}$$

 $\text{Complex } \widetilde{m}_D \text{ differs } \Gamma[N_1 \to \ell H] \text{ from } \Gamma[N_1 \to \overline{\ell} H^*].$

• In Minimally Extended SM (Heavy Majorana Neutrinos):

$$F(x) \equiv x \left[1 - (1 + x^2) \ln \left(\frac{1 + x^2}{x^2} \right) + \frac{1}{1 - x^2} \right] = -\frac{3}{2x} + \mathcal{O}\left(\frac{1}{x^3} \right)$$

The expansion applies for $x\equiv M_2/M_1\geq 5.$

• In Current Model:

$$\epsilon_1 = -\frac{\widehat{m}_3 M_1}{4\pi v^2} \frac{3\left(4y - \sqrt{\zeta^2 - 4r\zeta\cos\delta_D + 4r^2}\right)^2}{128\left(\zeta^2 - 4r\zeta\cos\delta_D + 4r^2\right)} (4r\cos\delta_D - \zeta)\sin\delta_D \zeta^2$$

where \hat{m}_3 is obtained by RG-running m_3 from M_Z to Leptogenesis Scale.

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry ●○○○	Summary	Spare 000000
Conjecture					
θ. Γ	Determined by	mp			

• As we have seen:

$$an heta_{s} = -rac{\sqrt{2}a}{b+c}$$

which holds before and after soft breaking!

• Fully Determined by *m*_D:

$$\mathbf{m}_{\mathbf{D}} = \begin{pmatrix} a & a \\ b & c \\ c & b \end{pmatrix}$$

• Not Affect by $\mu - \tau$ and CP symmetry breaking in M_R !

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry ○●○○	Summary	Spare
Conjecture					
Extr	ra <mark>Z</mark> 2 Symmetr	у			

- θ_s is Solely determined by m_D ;
- Soft symmetry breaking comes from *M_R*, *m_D* is not affect;
- If extra symmetry exists, it shouldn't be affected by soft breaking;
- It only applies on m_D , not M_R .

 $\mathbf{T}_{s}^{\dagger}\mathbf{m}_{D}=\mathbf{m}_{D}$

• Can be realized by:

$$u_{\mathsf{L}} \to \mathsf{T}_{\mathsf{s}} \upsilon_{\mathsf{L}}, \qquad \mathcal{N} \to \mathcal{N}$$

• Also respected by light neutrino's mass matrix M_{ν} :

$$\mathbf{T}_{s}^{\mathsf{T}}\mathbf{M}_{\boldsymbol{\nu}}\mathbf{T}_{s}=\mathbf{M}_{\boldsymbol{\nu}}$$

which is **Independent** of M_R .

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
			0000		000000
Representation					

Representation of the Extra Symmetry

• Neutrino mass matrix Invariant under transformation:

$$T_s^T M_\nu T_s = M_s$$

• Diagonalization Scheme:

$$V^T M_{\nu} V = D_{\nu}$$

• The effect of transformation is just a Diagonal Rephasing:

 $V^T T_s^T M_\nu T_s V = d_\nu D_\nu d_\nu = d_\nu V^T M_\nu V d_\nu$

with $d_{\nu}^2 = I_3$ which constrains $d_{\nu} = \text{diag}(\pm, \pm, \pm)$.

• General consequence:

$$T_s V = V d_{\nu} \quad \Rightarrow \quad T_s = V d_{\nu} V^{\dagger}$$

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
			000		
Representation					

Representaion of the Extra Symmetry

• **Two** Nontrivial Independent possibilities of d_{ν} :

$$d_
u^{(1)} = egin{pmatrix} -1 & & \ & 1 & \ & & 1 \end{pmatrix}, \quad d_
u^{(2)} = egin{pmatrix} 1 & & \ & 1 & \ & & -1 \end{pmatrix}.$$

• Mixing matrix with θ_s parameterized in terms of k:

$$V(k) = egin{pmatrix} rac{k}{\sqrt{2+k^2}} & rac{-\sqrt{2}}{\sqrt{2+k^2}} & 0 \ rac{1}{\sqrt{2+k^2}} & rac{k}{\sqrt{2(2+k^2)}} & rac{-1}{\sqrt{2}} \ rac{1}{\sqrt{2+k^2}} & rac{k}{\sqrt{2(2+k^2)}} & rac{1}{\sqrt{2}} \end{pmatrix}$$

• Two Independent symmetry transformations:

$$T_{s} = \frac{1}{2+k^{2}} \begin{pmatrix} 2-k^{2} & 2k & 2k \\ 2k & k^{2} & -2 \\ 2k & -2 & k^{2} \end{pmatrix}, \qquad T_{\mu\tau} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$T_{\mu\tau} \text{ is 3D Representation of } \mu - \tau \text{ symmetry. } \bullet \mathsf{T}_{\mu\tau}^{(3)}$$

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary ●○	Spare
Summary					
Sun	nmary				

- Oscillation Data strongly support $\mu \tau$ symmetry as a Good Approximate Flavor Symmetry.
- The $\mu \tau$ symmetry predicts $(\theta_{23}, \theta_{13}) = (45^{\circ}, 0^{\circ})$ & Vanishing Dirac CP Phase.
- Conjecture: both $\mu \tau$ and CP are Softly Broken by a Common Origin in M_R .
- With this conceptually Simple and Attractive construction, θ₁₃ is Correlated with θ₂₃ (Lower Bound on |δ_x| / Upper Bound on |δ_a|). Strong supports for up-coming experiments.
- Predictions on Baryon Asymmetry through leptogenesis.
- Constrain by leptogenesis scale: Lower Bound on θ_{13} .
- Extra Z_2 dictating solar mixing angle θ_{12} .

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
				00	
Thank You					

Thank You!

Motivat	tions lides - Rec	Construction	tion & 000	Predictions	Lept 000 trino Mass	ogenesis	Hidden S	ymmetry	Summar 00	y Spare ●0000
	Reco	onstri	ucti	ion of	[:] Ligl	nt Nei	utrinc	Mass	Ma [·]	trix
	Note:	Majo	rana	Neutri	no's m	lass mat	rix is <mark>S</mark>	ymmetri	C :	
	$M_ u \equiv$	V^*D_{ν}	∕† =	(m _{ee}	m _{eμ} m _{μμ}	$egin{array}{c} m_{e au} \ m_{\mu au} \ m_{ au au} \ m_{ au au} \end{pmatrix}$	with	$D_{ u} \equiv$	(m1 1	$\begin{pmatrix} m_2 \\ m_3 \end{pmatrix}$
	where:	V U'' U'	=	U"UU diag(e ⁱ diag(e ⁱ	$\dot{e}^{i\alpha_1}, e^{ilpha}, e^{ilpha_1}, e^{i\phi_2}$	$^{2}, e^{i\alpha_{3}}),$ $^{2}, e^{i\phi_{3}});$				
		U	≡	$\left(\begin{array}{c} S_{5}C_{a}\\ S_{5}S_{a}\end{array}\right)$	$c_{s}c_{x} - c_{s}s_{a} + c_{s}c_{a}$	$s_x e^{-i\delta_D}$ $s_x e^{-i\delta_D}$	c _s c _a + c _s s _a -	$-S_{s}C_{x}$ $S_{s}S_{a}S_{x}e^{-}$ $S_{s}C_{a}S_{x}e^{-}$	-iδ _D -iδ _d	$ \begin{array}{c} -s_{x}e^{i\delta_{D}} \\ -s_{a}c_{x} \\ c_{a}c_{x} \end{array} $
				$\theta_{x} \equiv 0$	θ_{13}, θ_s	$\equiv \theta_{12}, \theta$	$a \equiv \theta_{23}$)		

Note: of the Six Rephasing Phases, only Five are Independent.

Back

Aotivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary 00	Spare ○●○○○
pare Slides - Re	econstruction of Low Energy Neut	rino Mass			
Rec	onstructed Ma	iss Matrix	Elements		
m _{ee} =	$e^{-i2\alpha_1}\left[c_s^2c_x^2\widetilde{m}_1+s_s^2\right]$	$c_x^2 \widetilde{m}_2 + s_x^2 e^{-2i\theta}$	$\left[\int \widetilde{m}_{3} \right],$		
$m_{\mu\mu}$ =	$e^{-i2\alpha_2}\left[\left(s_sc_a-c_ss_as_b\right)\right]$	$(c_{x}e^{i\delta_{D}})^{2}\widetilde{m}_{1}+(c_{$	$(s_s c_a + s_s s_a s_x e^{i\delta_D})^2$	$\widetilde{m}_2 + s_a^2 c_x^2 \widetilde{m}_2$	<i>т</i> ₃],
$m_{ au au} =$	$e^{-i2\alpha_3}\left[\left(s_ss_a+c_sc_as_b\right)\right]$	$(c_{x}e^{i\delta_{D}})^{2}\widetilde{m}_{1}+(c_{$	$(s_s s_a - s_s c_a s_x e^{i\delta_D})^2$	$\widetilde{m}_2 + c_a^2 c_x^2 \widetilde{r}$	$\check{n}_3],$
$m_{e\mu}$ =	$e^{-i(\alpha_1+\alpha_2)} [c_s c_x(s_s c_a) + s_a s_x c_x e^{-i\alpha_1}]$	$-c_s s_a s_x e^{i\delta_D})\widetilde{m}$ $\delta_D \widetilde{m}_3],$	$1-s_sc_x(c_sc_a+s_ss_b)$	$S_a s_x e^{i\delta_D})\widetilde{m}_2$	
$m_{e au}$ =	$e^{-i(\alpha_1+\alpha_3)} [c_s c_x (s_s s_a - c_a s_x c_x e^{-i\alpha_3})]$	$+c_{s}c_{a}s_{x}e^{i\delta_{D}})\widetilde{m}_{3}],$	$_1 - s_s c_x (c_s s_a - s_s c_a)$	$(s_x e^{i\delta_D})\widetilde{m}_2$	
$m_{\mu au}$ =	$e^{-i(\alpha_2+\alpha_3)}[(s_sc_a-c_s$	$(s_s s_a s_x e^{i\delta_D})(s_s s_a)$	$+ c_s c_a s_x e^{i\delta_D})\widetilde{m}_1$		
	$+(c_sc_a+s_b)$	$s_s s_a s_x e^{i\delta_D})(c_s s_a)$	$(-s_s c_a s_x e^{i\delta_D})\widetilde{m}_2$	$-s_a c_a c_x^2 \widetilde{m}_3$],
with	$\widetilde{\mathbf{m}}_{\mathbf{i}} \equiv \mathbf{m}_{\mathbf{i}} \mathbf{e}^{-2\mathbf{i}\phi_{\mathbf{i}}}.$				

Shao-Feng Ge, TUHEP; Nanchang, 2010-4-18 Puzzles of Neutrino Mixing and Anti-Matter

▶ Back

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
					000000
Spare Slides - R	econstruction of Low Energy Neutr	ino Mass			

Tiny Variables of Reconstructed Mass Matrix

• From:

$$M_{
u}^{(0)} = rac{(b-c)^2}{(2-X)M_1^{(0)}} egin{pmatrix} 0 & 0 & 0 \ & 1 & -1 \ & & 1 \end{pmatrix}$$

we can get **Two Vanishing Mass Eigenvalues**:

 $m_1 = m_2 = 0$

• Normal Hierarchy \Rightarrow Nonzero m_2 :

$$y\equiv\frac{m_2}{m_3}\sim\mathcal{O}(r,\zeta)$$

• Besides:

$$\delta_{a}, \delta_{x}, z \equiv \frac{\delta m_{3}}{m_{3}}, \delta \alpha_{i} \left(\overline{\alpha}_{i} \equiv \alpha_{j} + \phi_{3}\right)$$

Back

Constrained $0\nu 2\beta$ Decay Observable M_{ee}

These two inequalities will lead to:

Constrained CP Phase δ_D v.s. M_{ee}

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary	Spare
Spare Slides - R	GE				
DC					

RG Running Effect

- Low Energy Observables $\stackrel{\mathsf{RGE}}{\longleftrightarrow}$ High Energy Observables
- Only mass eigenvalues are obviously affected:

$$m_j(\mu) = \chi(\mu,\mu_0)m_j(\mu_0)$$

• which can be expressed as:

$$\chi(\mu,\mu_0) pprox \exp\left[rac{1}{16\pi^2}\int_0^t \widehat{lpha}(t')dt'
ight] \quad ext{with} \quad \widehat{lpha} pprox -2g_2^2 + 6y_t^2 + \lambda$$

• For leptogenesis: $\widehat{m}_j(M_1) = \chi(M_1, M_Z) m_j(M_Z)$

Motivations	Construction & Predictions	Leptogenesis	Hidden Symmetry	Summary 00	Spare
Spare Slides - R	GE				
RG	Running Effect	t			

