# **Z-Factory Physics**

Chao-Hsi Chang (Zhao-Xi Zhang 张肇西) ---Working Group for Physics at Z-factory---

### 1. Introduction

#### -Why Z-Factory ?-

High Energy Physics (Accelerator) Future Physics & Techniques for Z<sup>0</sup>-Factory Accessibility in China (prospect)

# 2. Physics Topics for Z-Factory (Theoretical considerations only so far)

Z boson properties (Precision Test SM & New Physics) lepton physics (Precision Test SM & New Physics)

c, b-hadron physics (QCD)

### 3. Further Work

#### Deep & wide studies (Working Group)

A report and a special issue: Science China G, 2010

Apr. 17, 2010

**Z-Factory Physics** 

# The Working Group

### Theorists who are interested in the topic were organized themselves (Working Group: the physics at Z-factory).

#### The members of the (theoretical) working group:

乔从丰 <qiaocf@gucas.ac.cn>, 陈少敏 <chenshaomin@tsinghua.edu.cn>, 岳崇兴 <cxyue@lnnu.edu.cn>, 冯太付 <fengtf@dlut.edu.cn>, 高原宁<gaoyn@tsinghua.edu.cn>, 王国利<gl\_wang@hit.edu.cn>, 韩良<hanl@ustc.edu.cn>, 曹俊杰 <junjiec@itp.ac.cn>, 王健雄 <jxwang@mail.ihep.ac.cn>, 李海波<lihb@ihep.ac.cn>, 李学潜 <lixq@nankai.edu.cn>, 马建平<majp@itp.ac.cn>, 马文淦 <mawg@ustc.edu.cn>, 吴兴刚 <wuxg@cqu.edu.cn>, 杨金民 <jmyang@itp.ac.cn>, 邢志忠@ihep.ac.cn, 杨茂志 <yangmz@nankai.edu.cn>, 陈裕启 <ychen@itp.ac.cn>, 司宗国 <zgsi@sdu.edu.cn>, 张仁友 <zhangry@ustc.edu.cn>, 张肇西zhangzx@itp.ac.cn , etc

#### The 'door' is open !

### High Energy Physics (Accelerator) Future

### a. 'Precision' Frontiers:

 $\Phi$ -factory (**DA** $\Phi$ **NE**)

-Charm physics (BEPC+BESIII: for 5 and more years)

B-factory: Super-B (Japanese)

Z-factory (Giga-Z? ILC)

- b. 'High Energy' Frontiers: Tevatron (close soon)
  LHC (just starting)
  ILC (under consideration)
  CLIC (under studying)
  - etc

## **Physics & Techniques**

Physics & Techniques for Z-Factory (L=10<sup>2~3</sup>L<sub>0</sub>) Physics:

LEP-I: 
$$L_0 = 2.4 \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1}$$
  
SLC:  $L_0 = 0.6 \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ 

**Open new fronties for 'precision observation'** (~10<sup>10</sup> Z/year, but is it worth enough in physics ?)

**Techniques:** LINAC developed by ILC (superconductor cell techniques etc) ILC: L ~ 10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup>

Therefore  $L=10^{2\sim3}L_0$  accessible technically  $E^{Z-facroty} \sim 0.1 \cdot E^{ILC}$  cheaper comparatively

## Accessibility in China?

- **CHP future:** After **BEPCII+BESIII** (5 or more years later)
- **Cost:** Roughly ten percents of ILC (1TeV) **China development:** 
  - GDP is going up 10% each year High-tech requirements International duty (contributions to HEP) 5~7 years later In comparison with BEPC in 80 decade of last century: Worth of BEPC/GDP, etc
- The key point is 'worth' in physics & else, so theoretical investigation goes further first ! (Useful references for ILC also)

## 2. Physics Topics for Z-Factory

Z boson properties (Precision Test SM & New Physics) The Status:

LEP-I:

```
Scan 88GeV~94GeV 15.5 10<sup>6</sup> hadronic events
1.7 10<sup>6</sup> leptonic events
```

```
Detectors: Aleph, Delphi, L3, Opal.
```

SLC:

At Z-peak 0.6 10<sup>6</sup> events

(electron polarization beam: 70%)

**Detector: SLD** 

Very precision and rich results for Z-boson properties were achieved and indicated the predictions of SM work well:

Apr. 17, 2010

## The results about Z-boson

| Quantity                                        | Value                                  | Standard Model                   | Pull | Dev. |
|-------------------------------------------------|----------------------------------------|----------------------------------|------|------|
| m. [CaV]                                        | $170.9 \pm 1.8 \pm 0.6$                | $171.1 \pm 1.0$                  | 0.1  | 0.8  |
| Mur [CeV]                                       | $80.428 \pm 0.039$                     | $80.975 \pm 0.015$               | 1.4  | 1 7  |
| MW [Gev]                                        | $80.376 \pm 0.033$                     | 00001012 00010                   | 0.0  | 0.5  |
| $M_{Z}$ [GeV]                                   | $91.1876 \pm 0.0021$                   | $91.1874 \pm 0.0021$             | 0.1  | -0.1 |
| Γz [GeV]                                        | $2.4952 \pm 0.0023$                    | $2.4968 \pm 0.0010$              | -0.7 | -0.5 |
| r(had) [GeV]                                    | $1.7444 \pm 0.0020$                    | $1.7434 \pm 0.0010$              |      |      |
| r(inv) [MeV]                                    | $499.0 \pm 1.5$                        | $501.59 \pm 0.08$                |      | _    |
| $\Gamma(\ell^+\ell^-)$ [MeV]                    | $83.984 \pm 0.086$                     | $83.988 \pm 0.016$               |      | _    |
| ohad [nb]                                       | $41.541 \pm 0.037$                     | $41.466 \pm 0.009$               | 2.0  | 2.0  |
| Re                                              | $20.804 \pm 0.050$                     | $20.758 \pm 0.011$               | 0.9  | 1.0  |
| R <sub>µ</sub>                                  | $20.785 \pm 0.033$                     | $20.758 \pm 0.011$               | 0.8  | 0.9  |
| $R_{\tau}$                                      | $20.764 \pm 0.045$                     | $20.803 \pm 0.011$               | -0.9 | -0.8 |
| Rb                                              | $0.21629 \pm 0.00066$                  | $0.21584 \pm 0.00006$            | 0.7  | 0.7  |
| R <sub>c</sub>                                  | $0.1721 \pm 0.0030$                    | $0.17228 \pm 0.00004$            | -0.1 | -0.1 |
| $A_{FB}^{(0,e)}$                                | $0.0145 \pm 0.0025$                    | $0.01627 \pm 0.00023$            | -0.7 | -0.6 |
| $A_{FB}^{(0,\mu)}$                              | $0.0169 \pm 0.0013$                    |                                  | 0.5  | 0.7  |
| $A_{FB}^{(0,\tau)}$                             | $0.0188 \pm 0.0017$                    |                                  | 1.5  | 1.6  |
| $A_{FB}^{(0,b)}$                                | $0.0992 \pm 0.0016$                    | $0.1033 \pm 0.0007$              | -2.5 | -2.0 |
| $A_{FB}^{(0,c)}$                                | $0.0707 \pm 0.0035$                    | $0.0738 \pm 0.0006$              | -0.9 | -0.7 |
| $A_{FB}^{(0,s)}$                                | $0.0976 \pm 0.0114$                    | $0.1034 \pm 0.0007$              | -0.5 | -0.4 |
| 57(A(2))                                        | $0.2324 \pm 0.0012$                    | $0.23149 \pm 0.00013$            | 0.8  | 0.6  |
|                                                 | $0.2238 \pm 0.0050$                    |                                  | -1.5 | -1.6 |
| Ac                                              | $0.15138 \pm 0.00216$                  | $0.1473 \pm 0.0011$              | 1.9  | 2.4  |
|                                                 | $0.1544 \pm 0.0060$                    |                                  | 1.2  | 1.4  |
|                                                 | $0.1498 \pm 0.0049$                    |                                  | 0.5  | 0.7  |
| Aμ                                              | $0.142 \pm 0.015$                      |                                  | -0.4 | -0.3 |
| $A_T$                                           | $0.136 \pm 0.015$                      |                                  | -0.8 | -0.7 |
|                                                 | $0.1439 \pm 0.0043$                    |                                  | -0.8 | -0.5 |
| $A_b$                                           | $0.923 \pm 0.020$                      | $0.9348 \pm 0.0001$              | -0.6 | -0.6 |
| Ac                                              | $0.670 \pm 0.027$                      | $0.6679 \pm 0.0005$              | 0.1  | 0.1  |
| $A_8$                                           | $0.895 \pm 0.091$                      | $0.9357 \pm 0.0001$              | -0.4 | -0.4 |
| 9Ĺ                                              | $0.3010 \pm 0.0015$                    | $0.30386 \pm 0.00018$            | -1.9 | -1.8 |
| 9h                                              | $0.0308 \pm 0.0011$                    | $0.03001 \pm 0.00003$            | 0.7  | 0.7  |
| 9V°                                             | $-0.040 \pm 0.015$                     | $-0.0397 \pm 0.0003$             | 0.0  | 0.0  |
| $g_A^{\nu c}$                                   | $-0.507 \pm 0.014$                     | $-0.5064 \pm 0.0001$             | 0.0  | 0.0  |
| $A_{PV}$                                        | $(-1.31 \pm 0.17) \cdot 10^{-7}$       | $(-1.54 \pm 0.02) \cdot 10^{-7}$ | 1.3  | 1.2  |
| $Q_W(C_s)$                                      | $-72.62 \pm 0.46$                      | $-73.16 \pm 0.03$                | 1.2  | 1.2  |
| $Q_W(T1)$                                       | $-116.4 \pm 3.6$                       | $-116.76 \pm 0.04$               | 0.1  | 0.1  |
| $\Gamma(b \rightarrow X e\nu)$                  | $(3.55^{+0.53}_{-0.46}) \cdot 10^{-3}$ | $(3.19 \pm 0.08) \cdot 10^{-3}$  | 0.8  | 0.7  |
| $\frac{1}{2}(g_{\mu} - 2 - \frac{\alpha}{\pi})$ | 4511.07(74) 10-9                       | $4509.08(10) \cdot 10^{-9}$      | 2.7  | 2.7  |
| $\tau_T$ [fs]                                   | $290.93 \pm 0.48$ <sup>24</sup> , 2    | $291.80 \pm 1.76$                | -0.4 | -0.4 |

Measurements vs SM prediction: SM works well !

If Z-factory may improve the results substantially, the systematical errors must be suppressed.

## Constraints for new physics!

\_

## The Z effective coupling (to lepton)

New Physics: (W.G. Ma et al, Z.-X. Yue et al, K.M. Yang et al, X.-Q. Li et al,

L. Han et al, J.-J. Cao et al etc)

Multi-Higgs Model, Little Higgs Model, RPV SUSY Model, Extra Zboson Model etc

 The effective coupling Z-ff' (tree and loops & specially f,f' are leptons) :  $\Gamma^{\mu}_{\overline{2}ff}$  Vertex  $Z\tau\overline{\mu}(Z\overline{\tau}\mu)$  is a very strong constraint to the models, and Zfactory will offer the precise measurements of it.



## The neutral flavor change vertex

• The coupling ZAAA (A-CP odd light Higgs): 'A' strong couple to leptons (especially to  $\tau\overline{\tau}$  pair) and the decay of Z to A are very strong constraints to such models.

etc

Some special models are very sensitive to the coupling of Zboson to lepton and relevant decays, thus Z-factory is crucial for this kind of models.

The Models:

Lepton number violation  $\implies$  Baryon number violation  $\implies$  Cosmology baryon number generation.

### Very good source of lepton (L, Han et al, J.J. Cao et al)

•Production rate: the resonance effects to enhance besides High L

 Production at a much high energy (much higher than threshold) thus cause greater boost effects than B-factory (good for vertex detector)

•Rare decays (sensitive to new physics):

 $\tau \to e\gamma, \ \tau \to \mu\gamma, \ \tau \to \overline{\mu}\mu\mu, \ \tau \to \mu\overline{e}e, \ \tau \to \overline{e}ee,$  etc

the upper bound for lepton rare decays will be suppressed much

• Polarized beam of e<sup>-</sup>e<sup>+</sup> and CP violation relating to lepton 电子束极化的条件下(如SLC上的实验),末态轻子对左右前后不对称 大小为  $3_{+}D+A_{-}(\sigma_{F}-\sigma_{B})_{L}-(\sigma_{F}-\sigma_{B})_{R}$  1

$$A_{LRFB}^{0,\ell} = \frac{3}{4} |P_e| A_{\ell} = \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_F + \sigma_B)_R} \frac{1}{|P_e|}$$

比较无极化极化束条件(如LEP上的实验)

$$A_{FB}^{0,\ell} = \frac{3}{4} A_{\ell} A_{\ell} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

极化束的优点在于,可以在统计精度上使测量值优于非极化束条件下的 测量,例如,75%电子极化可给出相当与非极化束条件下的25倍统计量 的精度。

Polarized e<sup>-</sup> and/or e<sup>+</sup> beam produces + <sup>-</sup> pair:

**CP violation:** to measure **CP(T)-odd** operators precisely

To measure the CP violation in – decays beyond SM: (numerous events with great boost)

 Hadronic and pure leptonic decays (test of universality sensitive to QCD and light hadron physics):



$$\tau \rightarrow hadron(s) + v$$

 $\tau \rightarrow \nu l \overline{\nu}$ 

To determine the quantum numbers of the 'excited' states (vector and axial vector currents respectively)

#### 例如:在 $KK\pi$ 末态的 V 与 A 贡献



$$\sigma^{(I=1)} \left[ e^+ e^- \to K \overline{K} \pi \right] = \frac{4\pi\alpha^2}{s} \upsilon \left[ \tau^- \to (K \overline{K} \pi)^- \nu_\tau \right]$$

Aleph & CLEO:

A: (75±25)%

etc

#### c, b-quark fragmentation: (Z.-G. Si, et al)

•Non-perturbative fragmentation models: LUND , Webber Cluster, Quark Combination (ShangDong) Model.

•The best place to test the model.

#### Fragmentation functions (FFs) from c or b quark:



 $D_{c}^{J/\psi}, D_{c}^{\eta_{c}}, \cdots D_{c}^{B_{c}}, D_{c}^{B_{c}^{*}}, \cdots D_{b}^{\Upsilon}, D_{b}^{\eta_{b}}, \cdots D_{b}^{B_{c}}, D_{b}^{B_{c}^{*}}, \cdots$ 

 $D_c^{\Xi_{cc}}, D_c^{\Xi_{bc}}, \cdots D_b^{\Xi_{bc}}, D_b^{\Xi_{bb}}, \cdots$ Apr. 17, 2010

**L-Factory Physics** 

### 1. b-hadron studies (competitions from LHCb)

- B-meson: excited states etc,
- Bs meson: mixing, CP violation, rare decays, excited states etc,
- Bc meson: production mechanism(s), decays, excited states etc,
- b-baryons ( b, b, b, etc): production mechanism(s), decays, excited states etc,
- Double heavy baryons ( bc, bb, etc): production mechanism(s), decays, excited states etc,
- ISR production of  $b\overline{b}$ -like X, Y, Z particles: production mechanism(s), properties etc
- 2. c-hadron studies (competitions from Bfactories, Tevatron, LHCb etc) :
- **D-meson:**  $D^0 \overline{D}^0$  **mixing, CP violation, to confirm the excited** states etc, Apr. 17, 2010 Z-Factory Physics 15

- Ds meson: to confirm the excited states etc,
   c-baryons ( c' c' c' etc): production mechanism(s), to confirm the decays, excited states etc,
- •Double heavy baryons ( cc, cc, etc): production mechanism(s), decays, excited states etc,
- •To confirm the ISR production of X, Y, Z particles: production mechanism(s), properties etc,

#### Production mechanisms: (X.G. Wu et al)



At LEP-I: Bc meson just a few  $(J/\Psi + \pi)$  events, thus at Z-factory a few thousands of such events ! Any decay modes can be observed, and excited states may be seen too. The cross-sections for heavy quarkonia and excited states are similar to that of Bc meson but they are easy to observe.

The cross-section of double heavy baryon production is the same in magnitude, thus the situation is similar to Bc meson.

Apr. 17, 2010

**Z-Factory Physics** 

# Production of heavy quarkonia and 'X'-type particles via two-body exclusive production with a photon:

$$e^+(p_1) + e^-(p_2) \to \gamma(p_3) + H_{Q\bar{Q}}(P)$$



Here  $H_{Q\bar{Q}}$ :  $\eta_c, J/\psi, \cdots, \eta_b, \Upsilon, \cdots, X_{c\bar{c}}, \cdots, X_{b\bar{b}}, \cdots$ 

|                           | ${}^{3}S_{1}$         | ${}^{1}S_{0}$         | ${}^{3}P_{0}$         | ${}^{3}P_{1}$         | ${}^{3}P_{2}$         | ${}^{1}P_{1}$         |
|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $\sigma_{(c\bar{c})}(pb)$ | 0.934                 | $0.662 	imes 10^{-3}$ | $0.328 	imes 10^{-4}$ | $0.197 	imes 10^{-3}$ | $0.661 	imes 10^{-4}$ | $0.615\times 10^{-3}$ |
| $\sigma_{(b\bar{b})}(pb)$ | $0.565 	imes 10^{-1}$ | $0.475\times 10^{-2}$ | $0.128 	imes 10^{-4}$ | $0.838 	imes 10^{-4}$ | $0.930 	imes 10^{-4}$ | $0.833 	imes 10^{-4}$ |

Apr. 17, 2010

**Z-Factory Physics** 



FIG. 2: (color online) Total cross sections for the processes  $e^- + e^+ \rightarrow \gamma + H_{Q\bar{Q}}$  versus the collision energy. The red solid, the black dotted, the blue up-solid-triangle, the green dash-dotted, the red dashed and the down-hollow-triangle lines stand for  $Q\bar{Q}$  in  ${}^{3}S_{1}$ ,  ${}^{1}S_{0}$ ,  ${}^{3}P_{0}$ ,  ${}^{3}P_{1}$ ,  ${}^{3}P_{2}$ ,  ${}^{1}P_{1}$  respectively. The left figure is for charmonium and the right one is for bottomonium.



FIG. 3: (color online) Differential cross sections for the processes  $e^- + e^+ \rightarrow \gamma + H_{Q\bar{Q}}$  versus cos  $\alpha$ at a C.M.S. energy as Z-mass. The red solid, the black dotted, the blue up-solid-triangle, the green dash-dotted, the red dashed and the blue down-hollow-triangle lines stand for  $Q\bar{Q}$  in  ${}^{3}S_{1}$ ,  ${}^{1}S_{0}$ ,  ${}^{3}P_{0}$ ,  ${}^{3}P_{1}$ ,  ${}^{3}P_{2}$ ,  ${}^{1}P_{1}$  respectively. The left figure is for charmonium (the dotted line and the blue down-hollow-triangle almost emerge together almost) and the right one is for bottomonium (the red dashed line, the green dash-dotted line and the blue down-hollow-triangle emerge together almost). Apr. 17, 2010 Z-Factory Physics 20

## c, b-hadron physics



mass spectra: (G.L. Wang et al; X.Q. Li et al)

| $\mathbf{n} \ J^{PC}(^{(2S+1)}L_J)$ | $\mathrm{Th}(c\bar{c})$ | $\mathrm{Ex}(c\bar{c})$ | ${ m Th}(bar{b})$ | $\mathrm{Ex}(b\bar{b})$ |
|-------------------------------------|-------------------------|-------------------------|-------------------|-------------------------|
| $1 \ 0^{-+}(^{1}S_{0})$             | 2980.3(input)           | 2980.3                  | 9390.2(input)     | 9388.9                  |
| $2 \ 0^{-+}(^1S_0)$                 | 3576.4                  | 3637                    | 9950.0            |                         |
| $3 \ 0^{-+} (^1S_0)$                | 3948.8                  |                         | 10311.4           |                         |
| $1 \ 1^{}({}^{3}S_{1})$             | 3096.9(input)           | 3096.916                | 9460.5(input)     | 9460.30                 |
| <b>2</b> $1^{}({}^{3}S_{1})$        | 3688.1                  | 3686.09                 | 10023.1           | 10023.26                |
| <b>3</b> $1^{}({}^{3}D_{1})$        | 3778.9                  | 3772.92                 | 10129.5           |                         |
| $4 \ 1^{}({}^{3}S_{1})$             | 4056.8                  | 4039                    | 10368.9           | 10355.2                 |
| <b>5</b> $1^{}({}^{3}D_{1})$        | 4110.7                  | 4153                    | 10434.7           |                         |
| 6 1 <sup></sup> ( ${}^{3}S_{1}$ )   | 4329.4                  | 4421                    | 10635.8           | 10579.4                 |
| $7 \ 1^{}(^{3}S_{1})$               | 4545.9                  |                         | 10852.1           | 10865                   |

The D-wave dominant 1<sup>--</sup> states of have not ( $b\bar{b}$ ) observed yet !

## c, b-hadron physics

### **b-hadron excited states:**

Some excited states, such as those of Bc meson and baryons

b, b, b, ...., bc, bb, etc, can be expected to observe at Z-factory only, although still difficult.

## b-rare decays:

 $B_s \rightarrow e^+e^-, \ B_s \rightarrow \mu^+\mu^-, \ B_s \rightarrow e^+\mu^-, \ B_s \rightarrow e^-\mu^+ \ \text{etc}$ 

### Heavy quarkonium physics:

- a. Puzzle or not ? for ( <sub>b</sub>) production mechanism
- **b.** ( <sub>b</sub>) excited states (even hybrids)
- c. Exotics X<sub>b</sub>, Y<sub>b</sub>, Z<sub>b</sub> via ISR similar to B-Factory etc

## c, b-hadron physics





## In Summary

• The first step **Theoretical considerations** (to focus on the worth in physics) How? Quantitatively **Isolating from the other factors** • Great advantages in study of lepton physics & bhadron physics **Discovering new physics can be expected in** lepton physics ! A lot of b-hadron physics can be done uniquely !

## 3. Status and further work

• About 20 papers are completed and will publish in *Science China G* as a special issue in 2010

### 欢迎投稿

■从今年开始,中英文两刊成为两本独立的刊物, 不再对照发表。中文为核心刊物,英文被 SCI,EI 索引。

■审稿周期短,初审平均两个月;被接受的稿件中 有30%一经接收即可实现online first 出版。

■绿色通道:本刊编委或本学科院士推荐或供稿, 并同意署名的稿件,可视同该稿件已通过初审,交 由正副主编终审。通过的稿件当月正式出版。

■由84位一线科学家组成的一支高效协作的编委队 伍。

■新闻合作:与《科学时报》、《科技日报》、 《北京青年报》等多家报纸、美国科学促进会等国 内外网站以及科协新闻发布会合作,对优秀稿件展 开及时广泛的宣传。

投稿和下载网址:phys.scichina.com(国内免费开放) 海外网站:www.springer.com/scp

Apr. 17, 2010





| E 编:3 | E鼎盛       |
|-------|-----------|
| 副主编:  |           |
| 郑厚植   | 聂玉昕(物理I)  |
| 张肇西   | 朱永生(物理II) |
| 洪友士   | 符 松(力学)   |
| 周又元   | 邹振隆(天文)   |
|       |           |

## 3. Further work

- Deeper & wide theoretical studies: To find more important subjects or topics, More precise quantitative comparisons (thorough studies and M.C. simulation)
- The first goal within one or two years is to present a preliminary report on the important physics at Z-factory besides publishing papers based on the investigations and idea interactions (activities within and outside Group Working) etc

## Suggestions, Comments & Supports

Welcome your suggestions, comments and Supports even your join!

*We wish our works can be used as a reference for one option in determining* **CHEP** *future !* 

Thanks for your interests of Z-Factory !

Apr. 17, 2010