

The light Scalar Mesons: σ and κ

Zhou Zhi-Yong

Southeast University

Linear σ model \rightarrow Nonlinear σ model σ particle: appear \rightarrow disappear \rightarrow reappear in PDG

There is the broad object seen in $\pi\pi$ scattering, often called "background", which extends from about 400 MeV up to about 1700 MeV. This object we consider as a single broad resonance² which we identify as the lightest glueball with quantum numbers $J^{PC} = 0^{++} \dots$

 2 we refer to it as red dragon

P. Minkowski and W. Ochs, Eur. Phys. J. C9 (1999) 283

The Red Dragon

- Does QCD have a resonance near threshold ?
- Why care ?
 - Concerns the nonperturbative domain of QCD
 - Quark and gluon degrees of freedom useless there
 - ⇒ Understanding very poor, pattern of energy levels ?
 - Lowest resonance: σ ? ρ ?
- Resonance \leftrightarrow pole on second sheet
 - Poles are universal
 - Pole position is unambiguous, even if width is large
 - Where is the pole closest to the origin ?

as pointed by H.Leutwyler in QCHS VII

Comparison with compilation of PDG

Different methods in studying $\pi\pi$ physics

- 1. Chiral Perturbation Theory(without the information of resonance)
- 2. Phenomenological Analysis(model-dependent, hardly to be trusted in studying broad resonance)
- 3. Dispersive technique(including Roy equation method, S matrix theory...), modelindependent

2 Analytical Continuation

pole on second sheet \leftrightarrow zero on first sheet

s-plane • $S_0^0(s) = \eta_0^0(s) \exp 2i\delta_0^0(s)$ $S_0^0(s)$ is analytic in the cut plane $\overrightarrow{0}$ 4 \overrightarrow{M}^2 • For $0 < s < 4M_{\pi}^2$, $S_0^0(s)$ is real $\Rightarrow S_0^0(s^\star) = S_0^0(s)^\star$ x in elastic interval: $S_0^0(x \pm i\epsilon) = \exp \pm 2i\delta_0^0(x)$ Second sheet is reached by continuation across the elastic interval of the right hand cut $S_0^0(x-i\epsilon)^{II} = S_0^0(x+i\epsilon)^I = 1/S_0^0(x-i\epsilon)^I$ Analyticity \Rightarrow $S_0^0(s)^{II} = 1/S_0^0(s)^I$ valid $\forall s$ Pole in $S_0^0(s)^{II} \iff$ zero in $S_0^0(s)^{I}$

3 PKU Parametrization Form

The most important characters in studying low energy physics

- 1. Unitarity
- 2. Crossing symmetry
- 3. Analyticity

$$S^{phy} = S^{cut} \cdot \prod_{i} S^{p}_{i} , \qquad (1)$$

 S^{cut} is expressed based on dispersion relation:

$$S^{cut} = \exp[2i\rho(s)f(s)], \qquad (2)$$

$$f(s) = f(s_0) + \frac{(s - s_0)}{2\pi i} \int_L \frac{\text{disc}_L f(z)}{(z - s)(z - s_0)} dz + \frac{(s - s_0)}{\pi} \int_R \frac{\text{Im}_R f(z)}{(z - s)(z - s_0)} dz.$$
(3)

It conserves unitarity,

$$\operatorname{disc} f = \operatorname{disc} \left\{ \frac{1}{2i\rho(s)} \log \left[S^{phy}(s) \right] \right\}.$$
(4)

$$\operatorname{Im}_{R}f(s) = -\frac{1}{2\rho(s)}\log\eta(s) = -\frac{1}{4\rho(s)}\log(\frac{S_{11}S_{22}}{\det S}), \qquad (5)$$

The Simplest *S* **Matrices**

1. A virtual state \rightarrow pole at s_0 , with s_0 real.

$$S(s) = \frac{1 + i\rho(s)\frac{s}{s-s_L}\sqrt{\frac{s_0-s_L}{s_R-s_0}}}{1 - i\rho(s)\frac{s}{s-s_L}\sqrt{\frac{s_0-s_L}{s_R-s_0}}}.$$
(6)

As for a bound state at s_0 , change sign. $s_L < s_0 < s_R$.

2. A resonance \rightarrow poles at z_0 and z_0^* on second sheet:

$$S(s) = \frac{M^2(z_0) - s + i\rho(s)sG}{M^2(z_0) - s - i\rho(s)sG},$$
(7)

Some examples of the second sheet poles; In different $\text{Im}[z_0]$, the relations of $M^2(z_0)$ and $\text{Re}[z_0]$.

Recast Eq.(1) into

$$\frac{1}{2i\rho(s)}\log(1+2i\rho(s)T^{phy}(s)) = \frac{1}{2i\rho(s)}\sum_{i}\log(S^{R_i}(s)) + f(s).$$
(8)

its behavious when $s \rightarrow 0_+$:

$$T_J^I(s) = \frac{1}{32\pi(s - 4m_\pi^2)} \int_{4m_\pi^2 - s}^0 dt P_J (1 + \frac{2t}{s - 4m_\pi^2}) T^I(s, t, u) ,$$

$$u = 4m_\pi^2 - s - t$$
(10)

 $T_J^I(0_+)$ is finite based on Mandelstam analyticity.

In the case of unequal-mass, the behavior of T(s,t) in $t \to \infty$ is described by ReggeTheory. For simplicity, assume that $|T(s,t)| < |t|^n$ for a certain s and $\forall t$,

$$T_J^I(s) = \frac{1}{32\pi} \frac{1}{2q_s^2} \int_{-4q_s^2}^0 dt P_J(1 + \frac{t}{2q_s^2}) T^I(s, t, u) ,$$

$$q_s^2 = \frac{(m_K^2 - m_\pi^2)^2}{4s}, \ (s \to 0)$$
(11)

So

$$\lim_{t \to 0^+} |T_0^I(s)| < \frac{1}{32\pi} \frac{1}{2q_s^2} \int_{-4q_s^2}^0 dt |t|^n , \sim O(s^{-n})$$
(12)

According to the multi-channel unitarity

$$Im\{T_{l}^{ii}(s)\} = \rho^{i} |T_{l}^{ii}(s)|^{2} + \sum_{n \neq i} \rho^{n} T^{in}(s_{+}) T^{ni}(s_{-}) + (3 - and more - body channels)$$
(13)

SO

$$\operatorname{Im}_{R}f(s) = -\frac{1}{2\rho(s)} \log |S^{phy}(s)| \\
= -\frac{1}{4\rho} \log \left[1 - 4\rho \operatorname{Im}_{R}T + 4\rho^{2}|T(s)|^{2}\right] \\
= -\frac{1}{4\rho} \log \left[1 - 4\rho (\sum_{n} \rho_{n}|T_{1n}(s)|^{2} + \cdots)\right]$$
(14)

The behavior of third sheet pole is totally different from that of second sheet pole:

contribution of 3-sheet pole

4 $\pi\pi$ Scattering and σ resonance

Z.Y. Zhou et al.,[JHEP 0502:043,2005]

IJ=20 channel There exist a virtual state in s2 partial wave. $s_0 \simeq 0.049 \text{GeV}^2$, its contribution to a_0^2 is fairly large $\simeq 0.11 m_{\pi}^{-1}$).

IJ=11 channel

$$\operatorname{Re}T_{IJ}(s) = q^{2J}[a_J^I + b_J^I q^2 + O(q^4)], \quad (q = \frac{1}{2}\sqrt{s - 4m_\pi^2}), \quad (15)$$

leads to

$$f(4m_{\pi}^2) = -\sum_i a^{R_i} \,. \tag{16}$$

Thus f is subtracted at s = 0 and $s = 4m_{\pi}^2$,

$$f(s) = \frac{f(4m_{\pi}^2)}{4m_{\pi}^2}s + \frac{s(s - 4m_{\pi}^2)}{\pi} \int_{L+R} \frac{\operatorname{Im} f(s')}{s'(s' - 4m_{\pi}^2)(s' - s)}$$

$$\rightarrow -\sum_{i} a^{R_i} \frac{s}{4m_{\pi}^2} + \frac{s(s - 4m_{\pi}^2)}{\pi} \int_{L+R} \frac{\operatorname{Im} f(s')}{s'(s' - 4m_{\pi}^2)(s' - s)} ds', \qquad (17)$$

IJ=00 channel

two resonance: σ and $f_0(980)$. **Crossing symmetry** \leftarrow BNR relations:

$$\begin{split} \chi^2_{tot} &= \chi^2_{00} + \chi^2_{11} + \chi^2_{20} + \chi^2_{BNR} = 29.7(36) + 214.9(39) + 41.6(23) + 4.62 ; \\ M_\rho &= 757.0 \pm 0.4 MeV , \ \Gamma_\rho = 152.2 \pm 0.6 MeV , \\ M_\sigma &= 457 \pm 15 MeV , \ \Gamma_\sigma = 551 \pm 28 MeV , \\ (441^{+16}_{-8} MeV) \ (544^{+25}_{-18} MeV) \ \textbf{CCL}, \textbf{PRL96}(2006)\textbf{132001} \end{split}$$

	Our results	χPT [68]	Roy Eqs. [71]	Exp. [62]	Unit
a_{0}^{0}	0.211 ± 0.011	0.220 ± 0.005	0.220 ± 0.005	0.26 ± 0.05	
b_0^0	0.264 ± 0.015	0.280 ± 0.011	0.276 ± 0.006	0.25 ± 0.03	m_{π}^{-2}
a_0^2	-0.440 ± 0.011	-0.423 ± 0.010	-0.444 ± 0.010	-0.28 ± 0.12	10^{-1}
b_0^2	-0.785 ± 0.010	-0.762 ± 0.021	-0.803 ± 0.012	-0.82 ± 0.08	$10^{-1}m_{\pi}^{-2}$
a_1^1	0.367 ± 0.003	0.380 ± 0.021	0.379 ± 0.005	0.38 ± 0.02	$10^{-1}m_{\pi}^{-2}$
b_1^1	0.563 ± 0.003	0.58 ± 0.12	0.567 ± 0.013		$10^{-2}m_{\pi}^{-4}$

表 4.1: 和其他方法所得的阈参数的结果的比较。 IJ=11 道相移数据来自 Ref. [17, 64].

(18)

5 πK Scattering and κ resonance

s-plane $K\pi$ singularity

- **a**) s-channel unitarity cut $s \ge (M_K + M_\pi)^2$
- **b**) u-channel unitarity cut $u \ge (M_K + M_\pi)^2$, leads to s-plane $-\infty < s \le (M_K M_\pi)^2$

c) t-channel unitarity cut $t \ge 4(M_{\pi})^2$, leads to

i circular cut $s = (M_K^2 - M_\pi^2)exp(i\phi)$ ii $-\infty < s \le 0$

d) singularity at $|s|^{-const}$

图 5.1: πK 散射的左手割线, 圈割线和右手割线。

By measuring process $K^-\pi^+$, LASS Collaboration provide a combined data of a_0 and ϕ_0 :

$$A_0 = a_0 e^{i\phi_0} = T_0^{1/2} + \frac{1}{2} T_0^{3/2} = \frac{1}{2i} (\eta_0^{1/2} e^{2i\delta_0^{1/2}} - 1) + \frac{1}{4i} (\eta_0^{3/2} e^{2i\delta_0^{3/2}} - 1) , \qquad (19)$$

Our result: $M_{\sigma} = 694 \pm 53 MeV$, $\Gamma_{\sigma} = 606 \pm 59 MeV$

[Z. Y. Zhou, H. Q. Zheng, [Nucl. Phy. A775 (2006) 212-223]

Roy-steiner relation(an analogue of Roy equation) find the lowest I=1/2, I=0 resonance sits at $M_{\sigma} = 658 \pm 13 MeV$, $\Gamma_{\sigma} = 557 \pm 24 MeV$

[S. Descotes-Genon, B. Moussallam, hep-ph/0607133] \Rightarrow Calculation confirms our result.

• Estimate for the $O(p^6)$ couplings gives large correction

Bijnens, Dhonte & Talavera 2004, Schweizer 2005, Kaiser & Schweizer 2006

QCHS VII, Leutwyler

H. Leutwyler - Bern

6 Conclusion

- 1. Including the contributions of left hand cut will stablize the low-lying pole positions in fit.
- 2. By a model independent approach, the existence of σ and κ is confirmed and determined accurately.

Thank you!