J / ψ 和 η_{c} 分支比的测量

秦虎 高能所
BES 合作组

2006．10．29 桂林
－$J / \psi \rightarrow V P$ 可以通过强相互作用和电磁相互作用产生；通过精确测量 $J / \psi \rightarrow V P$ 所有可能的衰变模式，可以系统地研究赝标介子的夸克胶子成份，SU（3）破坏以及确定 J / ψ 两体衰变中电磁和 DOZI 压制振幅。

Decay mode	SOZI	DOZI
$\stackrel{\rho \pi}{ }{ }^{* \pm \pm} K^{\mp}$		
$\kappa^{* 0} \bar{K}^{0}$	$g\left(1-s_{g}\right)+e\left(2-s_{e}\right)$	
$\omega \eta$	$(g+e) X_{n}$	$+\quad \sqrt{2} \operatorname{rg}\left(\sqrt{2} X_{n}+\left(1-s_{\rho}\right) Y_{\eta}\right.$
$\omega \eta^{\prime}$	$(g+e) \chi_{\eta}$,	$+\sqrt{2} \mathrm{rg}\left(\sqrt{2} X_{\eta \prime}^{\prime \prime}+\left(1-s_{p} Y_{\eta_{\prime}}\right)\right.$ ）
$\phi \eta$	$\left(g\left(1-2 s_{g}\right)-2 e\left(1-s_{e}\right) Y_{\eta}\right.$	$+r g\left(1-s_{v}\right)\left(\sqrt{2} X_{\eta}+\left(1-s_{p}\right) Y_{\eta}\right)$
$\phi \eta^{\prime}$	$\left(g\left(1-2 s_{g}\right)-2 e\left(1-s_{e}\right)\right) Y_{\eta^{\prime}}$	$+\quad r g\left(1-s_{V}\right)\left(\sqrt{2} X_{n^{\prime}}+\left(1-s_{p}\right) Y_{\eta^{\prime}}\right)$
$\rho \eta$		
${ }_{\omega \pi^{0}}{ }^{\rho \prime \prime}$	${ }^{3 e X_{n \prime}} 3$	
$\phi \pi^{0}$	se	
	$\widetilde{B}(\psi \rightarrow V P)=\frac{B(\psi \rightarrow V P)}{P_{V}^{3}}=\|A\|^{2}$	

－BES II 的 $5.8 \times 10^{7} \mathrm{~J} / \psi$ 数据为精确测量 $\mathrm{J} / \psi \rightarrow V P$ 衰变提供了良好的条件。
－之前的BES II数据分析给出 $B\left(J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(2.10 \pm 0.12) \%$ ，高出 PDG 值大约 30% ．说明 $J / \psi \rightarrow \rho \pi$ 分支比相比其他实验组测得值要大。因此 $J / \psi \rightarrow V P$ 的其他衰变模式的测量变得非常重要。
－首次测量了 $\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$的分支比。

Outline

（1）$J / \psi \rightarrow \phi \pi^{0}, \phi \eta, \phi \eta^{\prime}$ 分支比的测量
（2）$J / \psi \rightarrow \omega \pi^{0}, \omega \eta, \omega \eta^{\prime}$ 分支比的测量
（3）$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$分支比的测量（首次测量）
（4）总结

Outline

（9）$J / \psi \rightarrow \phi \pi^{0}, \phi \eta, \phi \eta^{\prime}$ 分支比的测量
－$J / \psi \rightarrow \phi \gamma \gamma$
－$J / \psi \rightarrow \phi \gamma \pi^{+} \pi^{-}$
－$J / \psi \rightarrow \phi \pi^{+} \pi^{-} \gamma \gamma$
－$J / \psi \rightarrow \phi \pi^{0}, \phi \eta, \phi \eta^{\prime}$ 的分支比
（2）$J / \psi \rightarrow \omega \pi^{0}, \omega \eta, \omega \eta \prime$ 分支比的测量
－$J / \psi \rightarrow \omega \gamma \gamma$
－$J / \psi \rightarrow \omega \gamma \pi^{+} \pi^{-}$
－$J / \psi \rightarrow \omega \pi^{+} \pi^{-} \gamma \gamma$
－$J / \psi \rightarrow \omega \pi^{0}, \omega \eta, \omega \eta^{\prime}$ 的分支比
（3）$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$分支比的测量（首次测量）
－$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right)$
－$\eta_{c} \rightarrow 3\left(\pi^{+} \pi^{-}\right)$
－$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$的分支比
（4）总结

$J / \psi \rightarrow \phi \gamma \gamma$

选择条件

－带电径迹数 $N_{C}=2$ ，中性径迹 $N_{\text {photon }} \geq 2$ ；
－4C运动学拟合 $\chi_{K K \gamma \gamma}^{2}<15$ ；
－$\chi_{K^{+} K^{-} \gamma \gamma}^{2}<\chi_{K^{+} K^{-} \gamma \gamma \gamma}^{2}$ ．
$J / \psi \rightarrow \phi \gamma \gamma$

$$
\left|\mathbf{m}_{\mathbf{K}^{+} \mathbf{K}^{-}}-\mathbf{m}_{\phi}\right|<0.02 \mathbf{G e V} / \mathbf{c}^{2}
$$

$$
J / \psi \rightarrow \phi \pi^{0}
$$

$$
N_{\pi^{0}}<24 @ 90 \% C . L .
$$

$$
B\left(J / \psi \rightarrow \phi \pi^{0}\right)<5.10 \times 10^{-6} @ 90 \% \text { C.L. }
$$

$$
\begin{aligned}
& J / \psi \rightarrow \phi \eta \\
& N_{\eta}=2086 \pm 58
\end{aligned}
$$

$$
\text { 扣除 } \phi \text { sideband 的事例 } N=152 \pm 17
$$

$$
B(J / \psi \rightarrow \phi \eta)=(8.67 \pm 0.26) \times 10^{-4}(\text { stat } .)
$$

$$
J / \psi \rightarrow \phi \eta^{\prime}
$$

$$
N_{\eta^{\prime}}=68 \pm 15
$$

在 ϕ sideband 没有发现 $\eta \prime$ 信号。
$B\left(J / \psi \rightarrow \phi \eta^{\prime}\right)=(6.10 \pm 1.34) \times 10^{-4}($ stat.$)$

选择条件

－带电径迹数 $N_{c}=4$ ，中性径迹 $N_{\text {photon }} \geq 1$ ；
－4C运动学拟合

$$
\begin{aligned}
& \chi_{K^{+} K^{-} \gamma \pi^{+} \pi^{-}}^{2}<\chi_{K^{+} K^{-} \pi^{+} \pi^{-}}^{2} \\
& \chi_{K^{+} K^{-} \gamma \pi^{+} \pi^{-}}^{2}<\chi_{K^{+} K^{-} \pi^{+} \pi^{-} \gamma \gamma}^{2}
\end{aligned}
$$

$$
J / \psi \rightarrow \phi \gamma \pi^{+} \pi^{-}
$$

$$
J / \psi \rightarrow \phi \eta
$$

$$
N_{\eta}=134 \pm 14
$$

$$
B(J / \psi \rightarrow \phi \eta)=(9.79 \pm 1.02) \times 10^{-4}(\text { stat } .)
$$

$$
\begin{aligned}
& J / \psi \rightarrow \phi \eta^{\prime} \\
& N_{\eta^{\prime}}=462 \pm 33 \\
& B\left(J / \psi \rightarrow \phi \eta^{\prime}\right)=(5.64 \pm 0.40) \times 10^{-4}(\text { stat } .)
\end{aligned}
$$

选择条件

－带电径迹数 $N_{c}=4$ ，中性径迹 $N_{\text {photon }} \geq 2$ ；
－4C运动学拟合．

$$
\begin{aligned}
& J / \psi \rightarrow \phi \eta \\
& N_{\phi}=350 \pm 20 \\
& B(J / \psi \rightarrow \phi \eta)=(9.41 \pm 0.54) \times 10^{-4}(\text { stat. })
\end{aligned}
$$

$J / \psi \rightarrow \phi \eta^{\prime}$

$N_{\eta^{\prime}}=198 \pm 18$
ϕ sideband 没有发现 $\eta \prime$ 信号。
$B\left(J / \psi \rightarrow \phi \eta^{\prime}\right)=(5.11 \pm 0.46) \times 10^{-4}($ stat.$)$

$J / \psi \rightarrow$	Final states	Branching Fraction $\left(\times 10^{-4}\right)$
$\phi \pi^{0}$	$K^{+} K^{-} \gamma \gamma$	$<0.064($ C．L． $90 \%)$
	$K^{+} K^{-} \gamma \gamma$	$8.67 \pm 0.26 \pm 0.93$
	$K^{+} K^{-} \pi^{+} \pi^{-} \gamma$	$9.79 \pm 1.02 \pm 1.17$
$\phi \eta$	$K^{+} K^{-} \pi^{+} \pi^{-} \gamma \gamma$	$9.41 \pm 0.54 \pm 1.19$
	Average	$8.98 \pm 0.24 \pm 0.89$
	PDG	6.5 ± 0.7
	$K^{+} K^{-} \gamma \gamma$	$6.10 \pm 1.34 \pm 0.73$
$\phi \eta^{\prime}$	$K^{+} K^{-} \pi^{+} \pi^{-} \gamma$	$5.64 \pm 0.40 \pm 0.70$
	$K^{+} K^{-} \pi^{+} \pi^{-} \gamma \gamma$	$5.11 \pm 0.46 \pm 0.65$
	Average	$5.46 \pm 0.31 \pm 0.56$
	PDG	3.3 ± 0.4

P．R．D71，032003（2005）

Outline

（1）$J / \psi \rightarrow \phi \pi^{0}, \phi \eta, \phi \eta^{\prime}$ 分支比的测量
－$J / \psi \rightarrow \phi \gamma \gamma$
－$J / \psi \rightarrow \phi \gamma \pi^{+} \pi^{-}$
－$J / \psi \rightarrow \phi \pi^{+} \pi^{-} \gamma \gamma$
－$J / \psi \rightarrow \phi \pi^{0}, \phi \eta, \phi \eta \prime$ 的分支比
（2）$J / \psi \rightarrow \omega \pi^{0}, \omega \eta, \omega \eta \prime$ 分支比的测量
－$J / \psi \rightarrow \omega \gamma \gamma$
－$J / \psi \rightarrow \omega \gamma \pi^{+} \pi^{-}$
－$J / \psi \rightarrow \omega \pi^{+} \pi^{-} \gamma \gamma$
－$J / \psi \rightarrow \omega \pi^{0}, \omega \eta, \omega \eta \prime$ 的分支比
（3）$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$分支比的测量（首次测量）
－$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right)$
－$\eta_{c} \rightarrow 3\left(\pi^{+} \pi^{-}\right)$
－$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$的分支比
（4）总结

－带电径迹数 $N_{c}=2$ ，中性径迹 $N_{\text {photon }} \geq 4$ ；
－4C运动学拟
合 $\chi_{\pi^{+} \pi^{-} \gamma \gamma \gamma \gamma}^{2}<15$ ．
$J / \psi \rightarrow \omega \pi^{0}$

分支比

扣除来自连续区的本底：

- 来自 π^{0} sideband 的事例 $N=242 \pm 10$ ；
- 来自 $J / \psi \rightarrow \omega \eta\left(\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)$ 的事例 $N=142 \pm 18$ ；
－来自连续区的本底

$$
N=53 \pm 22 @ \sqrt{s}=3.07 \mathrm{GeV}
$$

$B\left(J / \psi \rightarrow \omega \pi^{0}\right)=(5.38 \pm 0.12) \times 10^{-4}($ stat．$)$

电磁势垒因子

$$
\begin{aligned}
\frac{\left|f\left(m_{J / \psi}^{2}\right)\right|}{|f(0)|}= & \left(\frac{\alpha}{3} \cdot\left[\frac{p_{\gamma}}{p_{\omega}}\right]^{3}\right. \\
& \left.\cdot \frac{m_{J / \psi} \Gamma\left(J / \psi \rightarrow \omega \pi^{0}\right)}{\Gamma\left(J / \psi \rightarrow \gamma \pi^{0}\right) \cdot \Gamma\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)}\right) \\
= & 0.0411 \pm 0.0009
\end{aligned}
$$

$$
J / \psi \rightarrow \omega \eta
$$

$$
\begin{aligned}
& \left|m_{\gamma_{3} \gamma_{4}}-m_{\eta}\right|<0.04 \mathrm{GeV} / \mathrm{c}^{2} \\
& B(\mathrm{~J} / \psi \rightarrow \omega \eta)= \\
& (22.86 \pm 0.43) \times 10^{-4}(\text { stat. })
\end{aligned}
$$

扣除了下面的事例：

- 来自于 η sideband的事例 $N=188 \pm 18$ ；
- 来自于本底道 $J / p s i \rightarrow \omega \eta, \eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ 的事例 $N=161 \pm 17$ ；
- 来自于本底道 $J / \psi \rightarrow \omega \pi^{0} \pi^{0}$ 的事例 $N=30 \pm 4$ 。
$J / \psi \rightarrow \omega \gamma \pi^{+} \pi^{-}$

迶择条件

- 带电径迹数 $N_{c}=4$ ，中性径迹 $N_{\text {photon }} \geq 3$ ；
- 4C运动学拟合 $\chi_{\pi^{+} \pi^{-} \pi^{+} \pi^{-} \gamma \gamma \gamma}^{2}<20,\left|m_{\pi^{+} \pi^{-} \pi^{0}}-m_{\omega}\right|<0.04 \mathrm{GeV} / \mathrm{c}^{2}$ ．

$$
J / \psi \rightarrow \omega \eta^{\prime}
$$

扣除 ω sideband 的事例 $N=17 \pm 6$ ．
$\mathbf{B}(\mathbf{J} / \psi \rightarrow \omega \eta)=(24.47 \pm 2.07) \times \mathbf{1 0}^{-4}$

扣除 ω sideband 的事例 $N=44 \pm 11$ ． $\mathbf{B}\left(\mathrm{J} / \psi \rightarrow \omega \eta^{\prime}\right)=(\mathbf{2 . 4 1} \pm 0.33) \times \mathbf{1 0}^{-4}(\mathrm{~s}$
$J / \psi \rightarrow \omega \pi^{+} \pi^{-} \gamma \gamma$

选择条件

- 带电径迹数 $N_{c}=4$ ，中性径迹 $N_{\text {photon }} \geq 3$ ；
- $N_{\text {photon }} \geq 4,4 \mathrm{C}$ 运动学拟合；$N_{\text {photon }}=3,1 \mathrm{C}$ 运动学拟合．

$$
J / \psi \rightarrow \omega \eta^{\prime}
$$

η sideband 没有 ω 的事例 $N=0 \pm 2$ ．
$\eta \prime$ sideband 没有 ω 的事例 $N=0 \pm 1$ ． $\mathbf{B}\left(\mathbf{J} / \psi \rightarrow \omega \eta^{\prime}\right)=(\mathbf{2 4 . 7 4} \pm \mathbf{0 . 8 4}) \times \mathbf{1 0}^{-4} \mathbf{B}\left(\mathbf{J} / \psi \rightarrow \omega \eta^{\prime}\right)=(\mathbf{2 . 0 6} \pm \mathbf{0 . 4 8}) \times \mathbf{1 0}^{-\mathbf{4}}($

$J / \psi \rightarrow$	Final states	Branching Fraction $\left(\times 10^{-4}\right)$
$\omega \pi^{0}$	$\pi^{+} \pi^{-} \gamma \gamma \gamma \gamma$	$5.38 \pm 0.12 \pm 0.65$
	PDG	4.2 ± 0.6
	$\pi^{+} \pi^{-} \gamma \gamma \gamma \gamma$	$22.86 \pm 0.43 \pm 2.99$
	$\pi^{+} \pi^{-} \pi^{+} \pi^{-} \gamma \gamma \gamma$	$24.47 \pm 2.07 \pm 3.50$
$\omega \eta$	$\pi^{+} \pi^{-} \pi^{+} \pi^{-} \gamma \gamma \gamma \gamma$	$24.74 \pm 0.85 \pm 3.66$
	Average	23.52 ± 2.73
	PDG	15.8 ± 1.6
$\omega \eta^{\prime}$	$\pi^{+} \pi^{-} \pi^{+} \pi^{-} \gamma \gamma \gamma$	$2.41 \pm 0.33 \pm 0.41$
	$\pi^{+} \pi^{-} \pi^{+} \pi^{-} \gamma \gamma \gamma \gamma$	$2.06 \pm 0.48 \pm 0.36$
	Average	2.26 ± 0.43
	PDG	1.67 ± 0.25

P．R．D73，052007（2006）

 Outline

（1）$J / \psi \rightarrow \phi \pi^{0}, \phi \eta, \phi \eta^{\prime}$ 分支比的测量
－$J / \psi \rightarrow \phi \gamma \gamma$
－$J / \psi \rightarrow \phi \gamma \pi^{+} \pi^{-}$
－$J / \psi \rightarrow \phi \pi^{+} \pi^{-} \gamma \gamma$
－$J / \psi \rightarrow \phi \pi^{0}, \phi \eta, \phi \eta^{\prime}$ 的分支比
（2）$J / \psi \rightarrow \omega \pi^{0}, \omega \eta, \omega \eta \prime$ 分支比的测量
－$J / \psi \rightarrow \omega \gamma \gamma$
－$J / \psi \rightarrow \omega \gamma \pi^{+} \pi^{-}$
－$J / \psi \rightarrow \omega \pi^{+} \pi^{-} \gamma \gamma$
－$J / \psi \rightarrow \omega \pi^{0}, \omega \eta, \omega \eta \prime$ 的分支比
（3）$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$分支比的测量（首次测量）
－$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right)$
－$\eta_{c} \rightarrow 3\left(\pi^{+} \pi^{-}\right)$
－$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$的分支比
－η_{c} 是粲偶素家族中的一个 ${ }^{1} S_{0}$ 态。是在 J / ψ 和 $\psi(2 S)$ 单举光子谱被发现的。
－理论预期 η_{c} 可以通过很多衰变模式衰变到强子末态，而实验上发现的衰变道却很少。
－BES II的高统计量数据为发现 η_{C} 新的衰变模式提供了很好的条件。
$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$分支比的测量（首次测量）$\quad \eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right)$
$\eta_{c} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}$的分支比

选择条件

- 带电径迹数 $N_{c}=6$ ，中性径迹 $N_{\text {photon }} \geq 1$ ；
- 4C运动学拟合 $\chi^{2}<10$ ；
－$\chi_{\gamma K^{+} K^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}}^{2}<\chi_{\gamma \gamma K^{+} K^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}}^{2}$ ，
$\chi_{\gamma K^{+} K^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}}^{2}<\chi_{K^{+} K^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}}^{2}$ ；
－$P_{\text {miss }}>55 \mathrm{MeV} / \mathrm{c}^{2}$ ．

$$
\begin{aligned}
& B\left(J / \psi \rightarrow \gamma \eta_{c}\right) B\left(\eta_{c} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right) \\
& =(1.21 \pm 0.32) \times 10^{-4}(\text { stat. } .)
\end{aligned}
$$

$$
\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right) \text {分支比的测量 (首次测量) } \quad \eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right)
$$

$$
\eta_{c} \rightarrow K^{+0} \bar{K}^{* 0} \pi^{+} \pi^{-} \pi^{+} \pi^{-} \text {的分支比 }
$$

$$
\left|m_{K^{+} \pi^{-}}-m_{K^{*}}\right|<0.05 \mathrm{GeV} / c^{2}
$$

分支比

$$
\begin{aligned}
& B\left(J / \psi \rightarrow \gamma \eta_{c}\right) B\left(\eta_{c} \rightarrow K^{*} \bar{K}^{*} \pi^{+} \pi^{-}\right) \\
& =(1.91 \pm 0.64) \times 10^{-4}(\text { stat } .)
\end{aligned}
$$

上限

用 Bayes 方法估计上限：

$$
N_{\eta_{c}}<65090 \% \text { C.L. }
$$

$$
\begin{aligned}
& B\left(J / \psi \rightarrow \gamma \eta_{c}\right) B\left(\eta_{c} \rightarrow K^{*} \bar{K}^{*} \pi^{+} \pi^{-}\right) \\
& <2.76 \times 10^{-4}
\end{aligned}
$$

$$
\left|m_{K^{+} K^{-}}-m_{\phi}\right|<0.015 \mathrm{GeV} / c^{2}
$$

上限

用 Bayes 方法估计上限：

$$
\begin{aligned}
& B\left(J / \psi \rightarrow \gamma \eta_{c}\right) B\left(\eta_{c} \rightarrow \phi \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right) \\
& <4.72 \times 10^{-5}
\end{aligned}
$$

$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$分支比的测量（首次测量）$\quad \eta_{c} \rightarrow 3\left(\pi^{+} \pi^{-}\right)$
$\eta_{c} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}$的分支比

选择条件

- 带电径迹数 $N_{c}=6$ ，中性径迹 $N_{\text {photon }} \geq 1$ ；
- 4 C 运动学拟合 $\chi^{2}<10$ ；
－$\chi_{\gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}}^{2}<\chi_{\gamma \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}}^{2}$ ，

$$
\chi_{\gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}}^{2}<\chi_{\pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}}^{2} ;
$$

$$
\begin{aligned}
& B\left(J / \psi \rightarrow \gamma \eta_{c}\right) B\left(\eta_{c} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right) \\
& =2.59 \pm 0.32 \times 10^{-4}(\text { stat. } .)
\end{aligned}
$$

Decay mode

$$
\begin{aligned}
& J / \psi \rightarrow \gamma \eta_{c}, \eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right) \\
& J / \psi \rightarrow \gamma \eta_{c}, \eta_{c} \rightarrow K^{* 0} \bar{K}^{* 0} \pi^{+} \pi^{-} \\
& J / \psi \rightarrow \gamma \eta_{c}, \eta_{c} \rightarrow K^{* 0} \bar{K}^{* 0} \pi^{+} \pi^{-} \\
& J / \psi \rightarrow \gamma \eta_{c}, \eta_{c} \rightarrow \phi 2\left(\pi^{+} \pi^{-}\right) \\
& J / \psi \rightarrow \gamma \eta_{c}, \eta_{c} \rightarrow 3\left(\pi^{+} \pi^{-}\right) \\
& \hline
\end{aligned}
$$

Branching fraction

$$
\begin{gathered}
(1.21 \pm 0.32 \pm 0.24) \times 10^{-4} \\
(1.91 \pm 0.64 \pm 0.48) \times 10^{-4} \\
<3.68 \times 10^{-4}(90 \% \text { C.L. }) \\
<6.03 \times 10^{-5}(90 \% \text { C.L. }) \\
(2.59 \pm 0.32 \pm 0.47) \times 10^{-4}
\end{gathered}
$$

Decay mode	Branching fraction
$\eta_{c} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$(0.93 \pm 0.25 \pm 0.34) \times 10^{-2}$
$\eta_{c} \rightarrow K^{* 0} \bar{K}^{* 0} \pi^{+} \pi^{-}$	$(1.47 \pm 0.49 \pm 0.58) \times 10^{-2}$
$\eta_{c} \rightarrow K^{* 0} \bar{K}^{* 0} \pi^{+} \pi^{-}$	$<3.51 \times 10^{-2}(90 \%$ C．L．$)$
$\eta_{c} \rightarrow \phi \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$<5.81 \times 10^{-3}(90 \%$ C．L．$)$
$\eta_{c} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$(1.99 \pm 0.25 \pm 0.71) \times 10^{-2}$

P．L．B633，19－24（2006）

Outline

（1）$J / \psi \rightarrow \phi \pi^{0}, \phi \eta, \phi \eta \prime$ 分支比的测量
－$J / \psi \longrightarrow \phi \gamma \gamma$
－$J / \psi \rightarrow \phi \gamma \pi^{+}{ }_{\pi}$
－$J / \psi \rightarrow \phi \pi^{+} \pi^{-} \gamma \gamma$
－$J / \psi \rightarrow \phi \pi^{0}, \phi \eta, \phi \eta^{\prime}$ 的分支比
（2） $\mathrm{J} / \psi \rightarrow \omega \pi^{0}, \omega \eta, \omega \eta^{\prime}$ 分支比的测量
－$J / \psi \rightarrow \omega \gamma \gamma$
－$J / \psi \rightarrow \omega \gamma \pi^{+} \pi^{-}$
－$J / \psi \rightarrow \omega \pi^{+} \pi^{-} \gamma \gamma$
－$J / \psi \rightarrow \omega \pi^{0}, \omega \eta, \omega \eta^{\prime}$ 的分支比
（3）$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$分支比的测量（首次测量）
－$\eta_{c} \rightarrow K^{+} K^{-2} 2\left(\pi^{+} \pi^{-}\right)$
－$\eta_{c} \rightarrow 3\left(\pi^{+} \pi^{-}\right)$
－$\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$的分支比
（4）总结

- 测量了 $J / \psi \rightarrow \omega \pi^{0}, \omega \eta, \omega \eta^{\prime}$ 的分支比；
- 测量了 $J / \psi \rightarrow \phi \pi^{0}, \phi \eta, \phi \eta^{\prime}$ 的分支比；
- 首次测量了 $\eta_{c} \rightarrow K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right), 3\left(\pi^{+} \pi^{-}\right)$的分支比。

Thants yow！

