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I. PATH INTEGRAL FORMULATION OF QUANTUM STATISTICS IN THE COHERENT-STATE
REPRESENTATION

First, we start from the partition function for a grand canonical ensemble which usually is written in the form

Z = Tre−β bK (1)

where β = 1
kT with k and T being the Boltzmann constant and the temperature and

K̂ = Ĥ − µN̂ (2)

here µ is the chemical potential, Ĥ and N̂ are the Hamiltonian and particle-number operators respectively. In the
coherent-state representation, the trace in Eq. (1) will be represented by an integral over the coherent states. To
determine the concrete form of the integral, for simplicity, let us start from an one-dimensional system. Its partition
function given in the particle-number representation is

Z =
∞∑

n=0

〈n| e−β bK |n〉 . (3)

Then, we use the completeness relation of the coherent states
∫

D(a∗a) | a >< a∗ |= 1 (4)

where | a > denotes a normalized coherent state, i.e., the eigenstate of the annihilation operator â with a complex
eigenvalue a

â |a〉 = a |a〉 (5)

whose Hermitian conjugate is

〈a∗| â+ = a∗ 〈a∗| (6)

and D(a∗a) symbolizes the integration measure defined by

D(a∗a) = {
1
π da∗da, for bosons;
da∗da, for fermions. (7)

In the above, we have used the eigenvalues a and a∗ to designate the eigenstates |a〉 and 〈a∗|, respectively. It
is emphasized that since we use the normalized eigenfunction of the coherent state whose expression in its own
representation will be shown in Eq. (15), the completeness relation in Eq. (4) has the ordinary form as we are
familiar with in quantum mechanics. Inserting Eq. (4) into Eq. (3), we have

Z =
∞∑

n=0

∫
D(a∗a)D(a′∗a′) 〈n | a′〉 〈a′∗| e−β bK |a〉 〈a∗ | n〉 (8)

where
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〈a∗ | n〉 = 1√
n!

(a∗)ne−a∗a,

〈n | a′〉 = 1√
n!

(a′)ne−a′∗a′ (9)

are the energy eigenfunctions given in the coherent-state representation (Note: for fermions, n = 0, 1). The both eigen-
functions commute with the matrix element

〈
a′∗ | e−β bK | a

〉
because the operator K̂(â+, â) generally is a polynomial

of the operator â+â for fermion systems. In view of the expressions in Eq. (9) and the commutation relation

a∗a′ = ±a′a∗ (10)

where the signs ”+” and ”−” are attributed to bosons and fermions respectively, it is easy to see

〈n | a′〉 〈a∗ | n〉 = 〈±a∗ | n〉 〈n | a′〉 . (11)

Substituting Eq. (11) in Eq. (8) and applying the completeness relations for the particle-number states and coherent
ones, one may find

Z =
∫

D(a∗a) 〈±a∗| e−β bK |a〉 (12)

where the plus and minus signs in front of a∗ belong to bosons and fermions respectively.
To evaluate the matrix element in Eq. (12), we may, as usual, divide the ”time” interval [0, β] into n equal and

infinitesimal parts, β = nε. and then insert a completeness relation shown in Eq. (4) at each dividing point. In this
way, Eq. (12) may be represented as

Z =
∫

D(a∗a)
n−1∏
i=1

D(a∗i ai) 〈±a∗| e−ε bK |an−1〉
〈
a∗n−1

∣∣ e−ε bK |an−2〉 · ··
× 〈

a∗i+1

∣∣ e−ε bK |ai〉 〈a∗i | e−ε bK |ai−1〉 · · · 〈a∗1| e−ε bK |a〉
(13)

Since ε is infinitesimal, we can write

e−ε bK(ba+,ba) ≈ 1− εK̂(â+, â) (14)

where K̂(â+, â) is assumed to be normally ordered. Noticing this fact, when applying the equations (5) and (6) and
the inner product of two coherent states

〈a∗i | ai−1〉 = e−
1
2 a∗i ai− 1

2 a∗i−1ai−1+a∗i ai−1 (15)

which suits to the both of bosons and fermions, one can get from Eq. (13) that

Z =
∫

D(a∗a)e−a∗a
∫ n−1∏

i=1

D(a∗i ai) exp{−ε
n∑

i=1

K(a∗i , ai−1)

+
n∑

i=1

a∗i ai−1 −
n−1∑
i=1

a∗i ai}
(16)

where we have set

±a∗ = a∗n , a = a0. (17)

It is noted that the factor e−a∗a in the first integrand comes from the matrix elements 〈±a∗| an−1〉 and 〈a∗1| a〉 and the
last sum in the above exponent is obtained by summing up the common terms − 1

2a∗i ai and − 1
2a∗i−1ai−1 appearing in

the exponents of the matrix element 〈a∗i | ai−1〉 and its adjacent ones 〈a∗i+1 | ai〉 and 〈a∗i−1 | ai−2〉. As will be seen in
Eq. (21), such a summation is essential to give a correct time-dependence of the functional integrand in the partition
function. The last two sums in Eq. (16) can be rewritten in the form

n∑
i=1

a∗i ai−1 −
n−1∑
i=1

a∗i ai

= 1
2a∗nan−1 + 1

2a∗1a0 + ε
2

n−1∑
i=1

[(a∗i+1−a∗i
ε )ai − a∗i (

ai−ai−1
ε )].

(18)
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Upon substituting Eq. (18) in Eq. (16) and taking the limit ε → 0, we obtain the path-integral expression of the
partition functions as follows:

Z =
∫

D(a∗a)e−a∗a

∫
D(a∗a)eI(a∗,a) (19)

where

D(a∗a) = {
∏
τ

1
π da∗(τ)da(τ), for bosons;

∏
τ

da∗(τ)da(τ), for fermions (20)

and

I(a∗, a) = 1
2a∗(β)a(β) + 1

2a∗(0)a(0)− ∫ β

0
dτ [ 12a∗(τ)ȧ(τ)

− 1
2 ȧ∗(τ)a(τ) + K(a∗(τ), a(τ))]

= a∗(β)a(β)− ∫ β

0
dτ [a∗(τ)ȧ(τ) + K(a∗(τ), a(τ))

(21)

where the last equality is obtained from the first one by a partial integration. In accordance with the definition given
in Eq. (17), we see, the path-integral is subject to the following boundary conditions

a∗(β) = ±a∗, a(0) = a (22)

where the signs ”+” and ”−” are written respectively for bosons and fermions. Here it is noted that Eq. (22) does
not implies a(β) = ±a and a∗(0) = a∗. Actually, we have no such boundary conditions.

For the systems with many degrees of freedom, the functional-integral representation of the partition functions may
directly be written out from the results given in Eqs. (19) -(22) as long as the eigenvalues a and a∗ are understood
as column matrices a = (a1, a2, · · · , ak, · · ·) and a∗ = (a∗1, a

∗
2, · · ·, a∗k, · · ·). Written explicitly, we have

Z =
∫

D(a∗a)e−a∗kak

∫
D(a∗a)eI(a∗,a) (23)

where

D(a∗a) = {
∏
k

1
π da∗kdak , for bosons;

∏
k

da∗kdak , for fermions, (24)

D(a∗a) = {
∏
kτ

1
π da∗k(τ)dak(τ) , for bosons;

∏
kτ

da∗k(τ)dak(τ) , for fermions (25)

and

I(a∗, a) = a∗k(β)ak(β)−
∫ β

0

dτ [a∗k(τ)ȧk(τ) + K(a∗k(τ), ak(τ))]. (26)

The boundary conditions in Eq. (22) now become

a∗k(β) = ±a∗k , ak(0) = ak. (27)

In Eqs. (23) and (26), the repeated indices imply the summations over k. If the k stands for a continuous index as
in the case of quantum field theory, the summations will be replaced by integrations over k.

It should be pointed out that in the previous derivation of the coherent-state representation of the partition func-
tions, the authors did not use the expressions given in Eqs. (16) and (18). Instead, the matrix element in Eq. (15)
was directly chosen to be the starting point and recast in the form

〈a∗i | ai−1〉 = exp{−ε

2
[a∗i (

ai − ai−1

ε
)− (

a∗i − a∗i−1

ε
)ai−1]}. (28)

Substituting the above expression into Eq. (13) and taking the limit ε → 0, it follows
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Z =
∫

D(a∗a) exp{−
∫ β

0

dτ [
1
2
a∗(τ)ȧ(τ)− 1

2
ȧ∗(τ)a(τ) + K(a∗(τ), a(τ))]}. (29)

Clearly, in the above derivation, the common terms appearing in the exponents of adjacent matrix elements were not
combined together. As a result, the time-dependence of the integrand in Eq. (29) could not be given correctly. In
comparison with the previous result shown in Eq. (29), the expression written in Eqs. (19)-(21) has two functional
integrals. The first integral which represents the trace in Eq. (1) is absent in Eq. (29). The second integral is defined
as the same as the integral in Eq. (29); but the integrand are different from each other. In Eq. (19), there occur two
additional factors in the integrand : one is e−a∗a which comes from the initial and final states in Eq. (13), another
is e

1
2 [a∗(β)a(β)+a∗(0)a(0)] in which a∗(β) and a(0) are related to the boundary conditions shown in Eq. (22). These

additional factors are also absent in Eq. (29). As will be seen soon later, the occurrence of these factors in the
functional-integral expression is essential to give correct calculated results.

To demonstrate the correctness of the expression given in Eqs. (23)-(27), let us compute the partition function for
the system whose Hamiltonian is of harmonic oscillator-type as we meet in the cases of ideal gases and free fields. In
this case,

K(a∗a) = ωka∗kak (30)

where ωk = εk − µ with εk being the particle energy and therefore Eq. (26) becomes

I(a∗, a) = a∗k(β)ak(β)−
∫ β

0

dτ [a∗k(τ)ȧk(τ) + ωka∗k(τ)ak(τ)]. (31)

By the stationary-phase method which is established based on the property of the Gaussian integral that the integral
is equal to the extremum of the integrand which is an exponential function, we may write

∫
D(a∗a)eI(a∗,a) = eI0(a

∗,a) (32)

where I0(a∗, a) is obtained from I(a∗, a) by replacing the variables a∗k(τ) and ak(τ) in I(a∗, a) with those values which
are determined from the stationary condition δI(a∗, a) = 0. From this condition and the boundary conditions in Eq.
(27) which implies δa∗k(β) = 0 and δak(0) = 0, it is easy to derive the following equations of motion

ȧk(τ) + ωkak(τ) = 0, ȧ∗k(τ)− ωka∗k(τ) = 0. (33)

Their solutions satisfying the boundary condition are

ak(τ) = ake−ωkτ , a∗k(τ) = ±a∗keωk(τ−β). (34)

On substituting the above solutions into Eq. (31), we obtain

I0(a∗, a) = ±a∗kake−ωkβ (35)

With the functional integral given in Eqs. (32) and (35), the partition functions in Eq. (23) become

Z0 = {
∫

D(a∗a)e−a∗kak(1−e−βωk ) , for bosons;∫
D(a∗a)e−a∗kak(1+e−βωk ) , for fermions.

(36)

For the boson case, the above integral can directly be calculated by employing the integration formula:
∫

D(a∗a)e−a∗(λa−b)f(a) =
1
λ

f(λ−1b) (37)

The result is well-known, as shown in the following

Z0 =
∏

k

1
1− e−βωk

(38)

For the fermion case, by using the property of Grassmann algebra and the integration formulas :
∫

da =
∫

da∗ = 0 ,
∫

da∗a∗ =
∫

daa = 1 (39)
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it is easy to compute the integral in Eq. (36) and get the familiar result

Z0 =
∏

k

(1 + e−βωk) (40)

It is noted that if the stationary-phase method is applied to the functional integral in Eq. (29), one could not get the
results as written in Eqs. (38) and (40), showing the incorrectness of the previous functional-integral representation
for the partition functions.

Now let us turn to discuss the general case where the Hamiltonian can be split into a free part and an interaction
part. Correspondingly, we can write

K(a∗, a) = K0(a∗, a) + HI(a∗, a) (41)

where K0(a∗, a) is the same as given in Eq. (30) and HI(a∗, a) is the interaction Hamiltonian. In this case, to evaluate
the partition function, it is convenient to define a generating functional through introducing external sources j∗k(τ)
and jk(τ) such that

Z[j∗, j] =
∫

D(a∗a)e−a∗kak
∫

D(a∗a) exp{a∗k(β)ak(β)
− ∫ β

0
dτ [a∗k(τ)ȧk(τ) + K(a∗a)− j∗k(τ)ak(τ)− a∗k(τ)jk(τ)]}

= e
− R β

0 dτHI( δ
δj∗

k
(τ) ,± δ

δjk(τ) )Z0[j∗, j]
(42)

where the sings ”+” and ”−” in front of δ
δjk(τ) refer to bosons and fermions respectively and Z0[j∗, j] is defined by

Z0[j∗, j] =
∫

D(a∗a)e−a∗kak

∫
D(a∗a)eI(a∗,a;j∗,j) (43)

in which

I(a∗, a; j∗, j) = a∗k(β)ak(β)− ∫ β

0
dτ [a∗k(τ)ȧk(τ)

+ωka∗k(τ)ak(τ)− j∗k(τ)ak(τ)− a∗k(τ)jk(τ)]
(44)

Obviously, the integral in Eq. (43) is of Gaussian-type. Therefore, it can be calculated by means of the stationary-
phase method as will be shown in detail in Sect. 4.

The exact partition functions can be obtained from the generating functional in Eq. (42) by setting the external
sources to be zero

Z = Z[j∗, j] |j∗=j=0 . (45)

In particular, the generating functional is much useful to compute the finite-temperature Green functions. For
simplicity, we take the two-point Green function as an example to show this point. In many-body theory, the Green
function usually is defined in the operator formalism by

Gkl(τ1, τ2) =
1
Z

Tr{e−β bKT [âk(τ1)â+
l (τ2)]} = Tr{eβ(Ω− bK)T [âk(τ1)â+

l (τ2)]} (46)

where 0 < τ1, τ2 < β, Ω = − 1
β lnZ is the grand canonical potential, T denotes the ”time” ordering operator, âk(τ1)

and â+
l (τ2) represent the annihilation and creation operators respectively. According to the procedure described in

Eqs. (12)-(22). it is clear to see that when taking τ1 and τ2 at two dividing points and applying the equations (5)
and (6), the Green function may be expressed as a functional integral in the coherent-state representation as follows

Gkl(τ1, τ2) =
1
Z

∫
D(a∗a)e−a∗kak

∫
D(a∗a)ak(τ1)a∗l (τ2)eI(a∗,a). (47)

With the aid of the generating functional defined in Eq. (42), the above Green function may be represented as

Gkl(τ1, τ2) = ± 1
Z

δ2Z[j∗, j]
δj∗k(τ1)δjl(τ2)

|j∗=j=0 (48)

where the sings ”+” and ”−” belong to bosons and fermions respectively.

5



II. GENERATING FUNCTIONAL OF GREEN FUNCTIONS FOR THERMAL QCD

To write out explicitly a path-integral expression of thermal QCD in the coherent-state representation, we first need
to formulate the QCD in the coherent-state representation, namely, to give exact expressions of the QCD Hamiltonian
and action in the coherent-state representation. For this purpose, we only need to work with the classical fields by
using some skilful treatments. Let us start from the effective Lagrangian density of QCD which appears in the
path-integral of the zero-temperature QCD

L = ψ̄{iγµ(∂µ − igT aAa
µ)−m}ψ − 1

4
F aµνF a

µν −
1
2α

(∂µAa
µ)2 − ∂µC̄aDab

µ Cb (49)

where T a = λa/2 is the color matrix, ψ and ψ̄ represent the quark fields, Aa
µ are the vector potentials of gluon fields,

Ca and C̄a designate the ghost fields,

F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν (50)

and

Dab
µ = δab∂µ − gfabcAc

µ (51)

For the sake of simplicity, we work in the Feynman gauge (α = 1). It is well-known that in this gauge, the results
obtained from the above Lagrangian are equivalent to those derived from the following Lagrangian which is given by
applying the Lorentz condition ∂µAa

µ = 0 to the Lagrangian in Eq. (49),

L = ψ̄{iγµ(∂µ − igT aAa
µ)−m}ψ − 1

2∂µAa
ν∂µAaν − gfabc∂µAa

νAbµAcν

− 1
4g2fabcfadeAbµAcνAd

µAe
ν − ∂µC̄a∂µCb + gfabc∂µC̄aCbAc

µ
(52)

Here it is noted that the application of the Lorentz condition only changes the form of free part of the gluon Lagrangian,
remaining the interaction part of the Lagrangian in Eq. (49) formally unchanged. The above Lagrangian is written
in the Minkowski metric where the γ−matrix is defined as γ0 = β and ~γ = β~α]. In the following, it is convenient to
represent the Lagrangian in the Euclidean metric with the imaginary time τ = it where t is the real time.

Since the path-integral in Eq. (42) is established in the first order (or say, Hamiltonian) formalism, to perform
the path-integral quantization of thermal QCD in the coherent-state representation, we need to recast the above
Lagrangian in the first order form. In doing this, it is necessary to introduce canonical conjugate momentum densities
which are defined by

Πψ = ∂L
∂∂tψ

= iψγ0 = iψ+,

Πψ = ∂L
∂∂tψ

= 0,

Πa
µ = ∂L

∂∂tAaµ = −∂tA
a
µ + gfabcAb

µAc
0,

Πa = ( ∂L
∂∂tCa )R = −∂tC

a
,

Π
a

= ( ∂L
∂∂tC

a )L = −∂tC
a + gfabcCbAc

0

(53)

where the subscripts R and L mark the right and left-derivatives with respect to the real time respectively. With the
above momentum densities, the Lagrangian in Eq. (52) can be represented as

L = Πψ

·
∂tψ+ Πaµ∂tA

a
µ + Πa∂tC

a + ∂tC
a
Π−H (54)

where

H = H0 +HI (55)

is the Hamiltonian density in which

H0 = ψ̄(~γ · O + m)ψ +
1
2
(Πa

µ)2 − 1
2
Aa

µ∇2Aa
µ −ΠaΠ

a
+ C̄a∇2Ca (56)

is the free Hamiltonian density and

HI = igψ̄T aγµAa
µψ + gfabc(iΠa

µAc
4 + ∂iA

a
µAc

i )A
b
µ − 1

4g2fabcfadeAb
µAd

µ

×(Ac
4A

e
4 −Ac

iA
e
i ) + gfabc(iΠaAc

4 − ∂iC̄
aAc

i )C
b (57)
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is the interaction Hamiltonian density here the Latin letter i denotes the spatial index. The above Hamiltonian
density is written in the Euclidean metric for later convenience. The matrix γµ in this metric is defined by γ4 = β and
~γ = −iβ~α . It should be noted that the conjugate quantities Πa and Π

a
for the ghost fields are respectively defined

by the right-derivative and the left one as shown in Eq. (53) because only in this way one can get correct results.
This unusual definition originates from the peculiar property of the ghost fields which are scalar fields, but subject to
the commutation rule of Grassmann algebra.

In order to derive an expression of the thermal QCD in the coherent-state representation, one should employ the
Fourier transformations for the canonical variables of the QCD which are listed below. For the quark field,

ψ(~x, τ) =
∫

d3p

(2π)3/2
[us(~p)bs(~p, τ)ei~p·~x + vs(~p)d∗s(~p, τ)e−i~p·~x] (58)

ψ(~x, τ) =
∫

d3p

(2π)3/2
[us(~p)b∗s(~p, τ)e−i~p·~x + vs(~p)ds(~p, τ)ei~p·~x] (59)

where us(~p) and vs(~p) are the spinor wave functions satisfying the normalization conditions us+(~p)us(~p) =
vs+(~p)vs(~p) = 1, bs(~p, τ) and b∗s(~p, τ) are the eigenvalues of the quark annihilation and creation operators b̂s(~p, τ) and
b̂+
s (~p, τ) which are defined in the Heisenberg picture, ds(~p, τ) and d∗s(~p, τ) are the corresponding ones for antiquarks.

For the gluon field,

Ac
µ(~x, τ) =

∫
d3k

(2π)3/2

1√
2ω(~k)

ελ
µ(~k)[ac

λ(~k, τ)ei~k·~x + ac∗
λ (~k, τ)e−i~k·~x] (60)

where ελ
µ(−→k ) is the polarization vector and

Πc
µ(~x, τ) = i

∫
d3k

(2π)3/2

√
ω(~k)

2
ελ

µ(~k)[ac
λ(~k, τ)ei~k·~x − ac∗

λ (~k, τ)e−i~k·~x] (61)

which follows from the definition in Eq. (53) and is consistent with the Fourier representation of free fields. In
the above, ac

λ(~k, τ) and ac∗
λ (~k, τ) are the eigenvalues of the gluon annihilation and creation operators âc

λ(~k, τ) and
âc+

λ (~k, τ). For the ghost field, we have

C
a
(~x, τ) =

∫
d3q

(2π)3/2

1√
2ω(~q)

[ca(~q, τ)ei~q·~x + c∗a(~q, τ)e−i~q·~x], (62)

Ca(~x, τ) =
∫

d3q

(2π)3/2

1√
2ω(~q)

[ca(~q, τ)ei~q·~x + c∗a(~q, τ)e−i~q·~x], (63)

Πa(~x, τ) = i

∫
d3q

(2π)3/2

√
ω(~q)

2
[ca(~q, τ)ei~q·~x − c∗a(~q, τ)e−i~q·~x], (64)

and

Π
a
(~x, τ) = i

∫
d3q

(2π)3/2

√
ω(~q)

2
[ca(~q, τ)ei~q·~x − c∗a(~q, τ)e−i~q·~x]. (65)

where ca(~q, τ) and c∗a(~q, τ) are the eigenvalues of the ghost particle annihilation and creation operators ĉa(~q, τ) and
ĉ+
a (~q, τ) and ca(~q, τ) and c∗a(~q, τ) are the ones for antighost particles.
For simplifying the expressions of the Hamiltonian and action of the thermal QCD, it is convenient to use abbre-

viation notations. Define

bθ
s(~p, τ) =

{
bs(~p, τ), if θ = +,

d∗s(~p, τ), if θ = −,

}
(66)
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W θ
s (~p) =

{
(2π)−3/2us(~p), if θ = +,

(2π)−3/2vs(~p), if θ = −
}

(67)

and furthermore, set α = (~p, s, θ) and

∑
α

=
∑

sθ

∫
d3p, (68)

Eqs. (58) and (59) may be represented as

ψ(~x, τ) =
∑
α

Wαbα(τ)eiθ~p·~x,

ψ(~x, τ) =
∑
α

Wαb∗α(τ)e−iθ~p·~x.
(69)

Similarly, when we define

ac
λθ(~k, τ) =

{
ac

λ(~k, τ), if θ = +,

ac∗
λ (~k, τ), if θ = −,

}
(70)

Acλ
µθ(~k) = (2π)−3/2(2ω(~k))−1/2ελ

µ(~k),
Πcλ

µθ(~k) = iθ(2π)−3/2[ω(~q)/2]1/2ελ
µ(~k)

(71)

and furthermore, set α = (~k, c, λ, θ) and

∑
α

=
∑

cλθ

∫
d3k, (72)

Eqs. (60) and (61) can be written as

Ac
µ(~x, τ) =

∑
α

Aα
µaα(τ)eiθ~k·~x,

Πc
µ(~x, τ) =

∑
α

Πα
µaα(τ)eiθ~k·~x (73)

For the ghost fields, if we define

cθ
α(~q, τ) =

{
ca(~q, τ), if θ = +,

c∗a(~q, τ), if θ = −,

}
(74)

Gθ(~q) = (2π)−3/2[2ω(~q)]−1/2,
Πθ(~q) = iθ(2π)−3/2[ω(~q)/2]1/2,

(75)

and furthermore set α = (~q, a, θ) and

∑
α

=
∑

aθ

∫
d3q (76)

then, Eqs. (62)-(65) will be expressed as

C
a
(~x, τ) =

∑
α

Gαcα(τ)eiθ~q·~x

Ca(~x, τ) =
∑
α

Gαc∗α(τ)e−iθ~q·~x

Πa(~x, τ) =
∑
α

Παcα(τ)eiθ~q·~x

Π
a
(~x, τ) =

∑
α

Παc∗α(τ)e−iθ~q·~x

(77)

Upon substituting Eqs. (69), (73) and (77) into Eqs. (56) and (57), it is not difficult to get
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H0(τ) =
∫

d3xH0(x) =
∑
α

θαεαb∗α(τ)bα(τ)

+ 1
2

∑
α

ωαa∗α(τ)aα(τ) +
∑
α

ωαc∗α(τ)cα(τ) (78)

and

HI(τ) =
∫

d3xHI(x) =
∑
αβγ

A(αβγ)b∗α(τ)bβ(τ)aγ(τ) +
∑
αβγ

B(αβγ)aα(τ)aβ(τ)aγ(τ)

+
∑

αβγδ

C(αβγδ)aα(τ)aβ(τ)aγ(τ)aδ(τ) +
∑
αβγ

D(αβγ)c∗α(τ)cβ(τ)aγ(τ) (79)

which are the QCD Hamiltonian given in the coherent state representation. In Eq. (78), the first, second and third
terms are the free Hamiltonians for quarks, gluons and ghost particles respectively where θα ≡ θ, εα = (~p2 +m2)1/2 is
the quark energy, ωα =

∣∣∣~k
∣∣∣ is the energy for a gluon or a ghost particle. In Eq. (79), the first term is the interaction

Hamiltonian between quarks and gluons, the second and third terms are the interaction Hamiltonian among gluons and
the fourth term represents the interaction Hamiltonian between ghost particles and gluons. The coefficient functions
in Eq. (79) are defined as follows:

A(αβγ) = ig(2π)3δ3(θα~pα − θβ~pβ − θγ
~kγ)W

θα

sα
(~pα)T aγµW

θβ
sα (~pβ)Aaλγ

µθγ
(~kγ), (80)

B(αβγ) = ig(2π)3δ3(θα
~kα + θβ

~kβ + θγ
~kγ)fabc[Πaλα

µθα
(~kα)

×A
cλγ

4θγ
(~kγ) + θαkα

i Aaλα

µθα(~kα)Acλγ

iθγ
(~kγ)]Abλβ

µθβ
(~kβ),

(81)

C(αβγδ) = − 1
4g2(2π)3δ3(θα

~kα + θβ
~kβ + θρ

~kρ + θσ
~kσ)fabcfade

×Abλα

µθα(~kα)Adλβ

µθβ
(~kβ)[Acλρ

4θρ
(~kρ)Aeλσ

4θσ
(~kσ)−A

cλρ

iθρ
(~kρ)Aeλσ

iθσ
(~kσ)]

(82)

and

D(αβγ) = ig(2π)3δ3(θα~qα − θβ~qβ − θγ
~kγ)fabcGa

θα
(~qα)

×[Πb
θβ(~qβ)Acλγ

4θγ
(~kγ)− θαkα

i Gb
θβ

(~qβ)Acλγ

iθγ
(~kγ)].

(83)

It is emphasized that the expressions in Eqs. (78) and (79) are just the Hamiltonian of QCD appearing in the path-
integral as shown in Eq. (42) where all the creation and annihilation operators in the Hamiltonian (which are written
in a normal product) are replaced by their eigenvalues.

To write the path-integral of thermal QCD, we need also an expression of action S given in the coherent state
representation. This action can be obtained by using the Lagrangian density shown in Eq. (54). By partial integration
and considering the following boundary conditions of the fields:

ψ(~x, 0) = ψ(~x), ψ(~x, 0) = ψ(~x),
ψ(~x, β) = −ψ(~x), ψ(~x, β) = −ψ(~x),

(84)

Ac
µ(~x, 0) = Ac

µ(~x, β) = Ac
µ(~x),

Πc
µ(~x, 0) = Πc

µ(~x, β) = Πc
µ(~x) (85)

and

C
a
(~x, 0) = C

a
(~x, β) = C

a
(~x), Ca(~x, 0) = Ca(~x, β) = Ca(~x),

Π
a
(~x, 0) = Π

a
(~x, β) = Π

a
(~x), Πa(~x, 0) = Πa(~x, β) = Πa(~x),

(86)

the action given by the Lagrangian density in Eq. (54) can be represented in the form

S =
∫ β

0
dτ

∫
d3x{ 1

2 [ψ+(~x, τ)ψ̇(~x, τ)− ψ̇+(~x, τ)ψ(~x, τ)]
+ i

2 [Πc
µ(~x, τ)Ȧc

µ(~x, τ)− Π̇c
µ(~x, τ)Ac

µ(~x, τ)]
+ i

2 [Πa(~x, τ)Ċa(~x, τ)− Π̇a(~x, τ)Ca(~x, τ)

+
·
Ca (~x, τ)Πa(~x, τ)− Ca(~x, τ)

·
Πa (~x, τ)]−H(~x, τ)}

(87)

9



where the first relation in Eq. (53) has been used and the symbol ” · ” in ψ̇(~x, τ), Ȧc
µ(~x, τ) · · · · · · now denotes the

derivatives of the fields with respect to the imaginary time τ . It is stressed here that only the above expression is
appropriate to use for deriving the coherent-state representation of the action by making use of the Fourier expansions
written in Eqs. (58)-(65). On inserting Eqs. (58)-(65) into Eq. (87), it is not difficult to get

S = − ∫ β

0
dτ{∫ d3k{ 1

2 [b∗s(~k, τ)ḃs(~k, τ)− ḃ∗s(~k, τ)bs(~k, τ)] + 1
2 [d∗s(~k, τ)ḋs(~k, τ)

−ḋ∗s(~k, τ)ds(~k, τ)] + 1
2 [ac∗

λ (~k, τ)ȧc
λ(~k, τ)− ȧc∗

λ (~k, τ)ac
λ(~k, τ)] + 1

2 [c∗a(~k, τ)
·

ca (~k, τ)

−
·

c∗a (~k, τ)ca(~k, τ)− c∗a(~k, τ)ċa(~k, τ) + ċ∗a(~k, τ)ca(~k, τ)]}+ H(τ)}
= −SE

(88)

where H(τ) is given by the sum of the Hamiltonians in Eqs. (78) and (79) and SE is the action defined in the
Euclidean metric. It is noted that if one considers a grand canonical ensemble of QCD, the Hamiltonian in Eq. (88)
should be replaced by K(τ) defined in Eq. (2). Employing the abbreviation notation as denoted in Eqs. (66), (70)
and (74) and letting qα stand for (aα, bα, cα), the action may be compactly represented as

SE =
∫ β

0

dτ{
∑
α

1
2
[q∗α(τ) ◦ q̇α(τ)− q̇∗α(τ) ◦ qα(τ)] + H(τ)} (89)

where we have defined

q∗α ◦ qα = aα−aα+ + b∗αbα + θαc∗αcα (90)

It is emphasized that the θα = ± is now contained in the subscript α. Therefore, each α may takes α+ and/or α− as
the first term in Eq. (90) does.

With the action SE given in the preceding section, the quantization of the thermal QCD in the coherent-state
representation is easily implemented by writing out its generating functional of thermal Green functions. According
to the general formula shown in Eq. (42), the QCD generating functional can be formulated as

Z[j] =
∫

D(q∗q)e−q∗·q ∫
D(q∗q) exp{ 1

2 [q∗(β) · q(β)
−q∗(0) · q(0)]− SE +

∫ β

0
dτj∗(τ) · q(τ)} (91)

where we have defined

q∗ · q =
1
2
a∗αaα + θαb∗αbα + c∗αcα (92)

and

j∗ · q = ξ∗αaα + θα(η∗αbα + b∗αηα + ζ∗αcα + c∗αζα) (93)

here ξα, ηα and ζα are the sources for gluons, quarks and ghost particles respectively and the repeated index implies
summation. It is noted that the product q∗ · q defined above is different from the q∗α ◦ qα defined in Eq. (90) in the
terms for quarks and ghost particles and the subscript α in Eqs. (92) and (93) is also defined by containing θα = ±
. In what follows, we assign α± to represent the α with θα = ±. According to this notation, the sources in Eq. (93)
are specifically defined as follows:

ξα+ = ξα, ξα− = ξ∗α
ηα+ = ηα, ηα− = η∗α
ζα+ = ζα, ζα− = ζ

∗
α

(94)

where the subscript α on the right hand side of each equality no longer contains θα and the gluon term in Eq. (92)
(1/2)a∗αaα may be replaced by aα−aα+ . The integration measures D(q∗q) and D(q∗q) are defined as in Eqs. (24) and
(25).

III. RELATIVISTIC EQUATION FOR QQ BOUND STATES

With the generating functional given in the preceding section, we are ready to derive the relativistic equation
for qq bound states at finite temperature. It is well-known that a bound state exists in the space-like Minkowski
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space in which there always is an equal-time Lorentz frame. Since in the equal-time frame, the relativistic equation is
reduced to a three-dimensional one without loss of any rigorism, in this section we only pay our attention to the three-
dimensional equation which may be derived from the equations of motion satisfied by the following qq two-”time”
(temperature) four-point Green function

G(αβ; γδ; τ1 − τ2) = Tr{eβ(Ω− bK)T{N [̂bα(τ1)̂b+
β (τ1)]N [̂bγ(τ2)̂b+

δ (τ2)]}}
≡

〈
T{N [̂bα(τ1)̂b+

β (τ1)]N [̂bγ(τ2)̂b+
δ (τ2)]}

〉
β

(95)

where the symbol 〈· · ·〉β represents the statistical average and N symbolizes the normal product whose definition can
be given from the corresponding definition at zero-temperature by replacing the vacuum average with the statistical
average

N [̂bα(τ1)̂b+
β (τ2)] = T [̂bα(τ1)̂b+

β (τ2)]− Sαβ(τ1 − τ2) (96)

where

Sαβ(τ1 − τ2) =
〈
T [̂bα(τ1)̂b+

β (τ2)]
〉

β
(97)

is the quark or antiquark thermal propagator. The normal product in Eq. (95) plays a role of excluding the contraction
between the quark and the antiquark operators from the Green function when the quark and antiquark are of the
same flavor. Physically, this avoids the qq annihilation that would break stability of a bound state. Substituting Eq.
(96) in Eq. (95), we have

G(αβ; γδ; τ1 − τ2) = G(αβ; γδ; τ1 − τ2)− SαβSγδ (98)

where

G(αβ; γδ; τ1 − τ2) =
〈
T{b̂α(τ1)̂b+

β (τ1)̂bγ(τ2)̂b+
δ (τ2)}

〉
β

(99)

is the ordinary Green function and, Sαβ and Sγδ are the equal-time quark (antiquark) propagators. Obviously, in
order to derive the equation of motion satisfied by the Green function G(αβ; γδ; τ1 − τ2), we need first to derive the
equation of motion for the Green function G(αβ; γδ; τ1 − τ2).

Let us start with the generating functional in Eq. (91). By partial integration of the second term on the right hand
side of Eq. (89), the generating functional may be written in the form

Z[j] =
∫

D(q∗q)e−q∗·q ∫
D(q∗q) exp{q∗(β) · q(β)

−SE +
∫ β

0
dτj∗(τ) · q(τ)} (100)

where

SE =
∫ β

0

dτ{
∑
α

q∗α(τ) ◦ q̇α(τ) + H(τ)} (101)

here H(τ) was given in Eqs. (78) and (79). First, we derive an equation of motion describing the variation of the qq
four-point Green function with the ”time” variable τ1. For this purpose, let us differentiate the generating functional
in Eq. (100) with respect to b∗α(τ1). Considering that the generating functional is independent of b∗α(τ1) and noticing
the expressions given in Eqs. (101), (78), (79) and (93), one may obtain

δZ[j]
δb∗α(τ1)

=
∫

D(q∗q)e−q∗·q ∫
D(q∗q)[−ḃα(τ1)− εαθαbα(τ1)

−∑
ρλ

Aαρλbρ(τ1)aλ(τ1) + θαηα(τ1)] exp{q∗(β) · q(β)− SE

− ∫ β

0
dτj∗(τ) · q(τ)} = 0.

(102)

When the bα(τ1) and aλ(τ1) in the above are replaced by the functional derivatives θαδ/δη∗α(τ1) and δ/δj∗λ(τ1)
respectively and multiplying the both sides of Eq. (102) with θα, the above equation can be written as

{ d

dτ1

δ

δη∗α(τ1)
+ θαεα

δ

δη∗α(τ1)
+

∑

ρλ

θαθρA(αρλ)
δ2

δη∗ρ(τ1)δj∗λ(τ1)
− ηα(τ1)}Z[j] = 0. (103)
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Then, we differentiate the above equation with respect to the sources ηβ((τ1), giving

{( d
dτ1

δ
δη∗α(τ1)

) δ
δηβ(τ1)

+ θαεα
δ2

δη∗α(τ1)δηβ(τ1)
+

∑
ρλ

θαθρA(αρλ) δ3

δη∗ρ(τ1)δηβ(τ1)δj∗λ(τ1)

+δαβ − ηα(τ1) δ
δηβ(τ1)

}Z[j] = 0.
(104)

Furthermore, successive differentiations of Eq. (104) with respect sources η∗γ(τ2) and ηδ(τ2) yield

{( d
dτ1

δ
δη∗α(τ1)

) δ3

δηβ(τ1)δη∗γ(τ2)δηδ(τ2)
+ θαεα

δ4

δη∗α(τ1)δηβ(τ1)δη∗γ(τ2)δηδ(τ2)

+
∑
λσ

θαθρA(αρλ) δ5

δη∗ρ(τ1)δηβ(τ1)δη∗γ(τ2)δηδ(τ2)δj∗λ(τ1)
+ δαβ

δ2

δη∗γ(τ2)δηδ(τ2)

−δαδδ(τ1 − τ2) δ2

δη∗γ(τ2)δηβ(τ1)
− ηα(τ1) δ3

δηβ(τ1)δη∗γ(τ2)δηδ(τ2)
}Z[j] = 0.

(105)

Similarly, when differentiating Eq. (100) with respect bβ(τ1), one may obtain

{ d

dτ1

δ

δηβ(τ1)
− θβεβ

δ

δηβ(τ1)
−

∑

σλ

θσθβA(σβλ)
δ2

δησ(τ1)δj∗λ(τ1)
− η∗β(τ1)}Z[j] = 0, (106)

Subsequently, On differentiating the above equation with respect to η∗α(τ1), we get

{ δ
δη∗α(τ1)

( d
dτ1

δ
δηβ(τ1)

)− θβεβ
δ2

δη∗α(τ1)δηβ(τ1)
−∑

σλ

θβθσA(σβλ) δ3

δη∗α(τ1)δησ(τ1)δj∗λ(τ1)

−δαβ + η∗β(τ1) δ
δη∗α(τ1)

}Z[j] = 0.
(107)

Finally, successive differentiations of the above equation with respect to the sources η∗γ(τ2) and ηδ(τ2) give rise to

{ δ
δη∗α(τ1)

( d
dτ1

δ
δηβ(τ1)

) δ2

δη∗γ(τ2)δηδ(τ2)
− θβεβ

δ4

δη∗α(τ1)δηβ(τ1)δη∗γ(τ2)δηδ(τ2)

−∑
λσ

θβθσA(σβλ) δ5

δη∗α(τ1)δησ(τ1)δη∗γ(τ2)δηδ(τ2)δj∗λ(τ1)
− δαβ

δ2

δη∗γ(τ2)δηδ(τ2)

+δβγδ(τ1 − τ2) δ2

δη∗α(τ1)δηδ(τ2)
+ η∗β(τ1) δ3

δη∗α(τ1)δη∗γ(τ2)δηδ(τ2)
}Z[j] = 0.

(108)

Adding Eq. (104) to Eq. (107), then multiplying the both sides of the equation thus obtained with −θαθβ and
finally setting the external sources η∗α = ηβ = 0, but remaining the gluon source jλ 6= 0, we get

(
d

dτ1
+ θαεα − θβεβ)Sjλ

αβ +
∑

ρσλ

[A(αρλ)δβσ −A(σβλ)δαρ]
δ

δj∗λ(τ1)
Sjλ

ρσ = 0 (109)

where

Sjλ

αβ = − 1
Z

θαθβ
δ2Z[j]

δη∗α(τ1)δηβ(τ1)
|η∗α=ηβ=0 (110)

is the quark (antiquark) equal-time propagator in the presence of source jλ. If we define

H(αβ; ρσ; τ1)jλ = (
d

dτ1
+ θαεα − θβεβ)δαρδβσ +

∑

λ

f(αβ; ρσλ)
δ

δj∗λ(τ1)
(111)

where

f(αβ; ρσλ) = A(αρλ)δβσ −A(σβλ)δαρ, (112)

Eq. (109) can simply be represented as
∑
ρσ

H(αβ; ρσ; τ1)jλSjλ
ρσ = 0. (113)

When summing up the both equations in Eqs. (105) and (108), then multiplying the equation thus obtained with
θαθβθγθδ and finally setting all the sources but jλ to be zero, one may get
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( d
dτ1

+ θαεα − θβεβ)G(αβ; γδ; τ1 − τ2)jλ +
∑
ρσλ

f(αβ; ρσλ) δ
δj∗λ(τ1)

G(ρσ; γδ; τ1 − τ2)jλ

= δ(τ1 − τ2)[δβγSαδ(τ1 − τ2)jλ − δαδSγβ(τ2 − τ1)jλ ]
(114)

where

G(αβ; γδ; τ1 − τ2)jλ =
1
Z

θαθβθγθδ
δ4Z[j]

δη∗α(τ1)δηβ(τ1)δη∗γ(τ2)δηδ(τ2)
|η∗=η=0 (115)

and

Sαβ(τ1 − τ2)jλ = − 1
Z

θαθβ
δ2Z[j]

δη∗α(τ1)δηβ(τ2)
|η∗=η=0 (116)

are respectively the qq two-”time” four-point thermal Green function and the quark or antiquark thermal propagator
in presence of source jλ. When the source jλ is turned off, Eqs. (115) and (116) will respectively go over to the Green
function in Eq. (99) and the propagator in Eq. (97). It is noted that due to the restriction of the delta function,
the propagators in Eq. (114) are actually ”time”-independent. With the definition in Eq. (111), Eq. (114) may be
represented as

∑
ρσ

H(αβ; ρσ; τ1)jλG(ρσ; γδ; τ1 − τ2)jλ = −δ(τ1 − τ2)S(αβ; γδ)jλ (117)

where

S(αβ; γδ)jλ = δαδS
jλ

γβ − δβγSjλ

αδ. (118)

Acting on the both sides of Eq. (155) with the operator H(αβ; ρσ; τ1)jλ and using the equations in Eqs. (113) and
(117), we find

∑
ρσ

H(αβ; ρσ; τ1)jλG(ρσ; γδ; τ1 − τ2)jλ =
∑
ρσ

H(αβ; ρσ; τ1)jλG(ρσ; γδ; τ1 − τ2)jλ

= −δ(τ1 − τ2)S(αβ; γδ)jλ

(119)

This indicates that the equation of motion satisfied by the Green function G(αβ; γδ; τ1 − τ2) formally is the same as
the one shown in Eq. (114). Therefore, in the case that the source jλ vanishes, we can write

( d
dτ1

+ θαεα − θβεβ)G(αβ; γδ; τ1 − τ2)
= −δ(τ1 − τ2)S(αβ; γδ)− ∑

ρσλ

f(αβ; ρσλ)G(ρσλ; γδ; τ1 − τ2) (120)

where

G(ρσλ; γδ; τ1 − τ2) = δ
δj∗λ(τ1)

G(ρσ; γδ; τ1 − τ2)jλ |jλ=0

=
〈
T{N [̂bρ(τ1)̂b+

σ (τ1)âλ(τ1)]N [̂bγ(τ2)̂b+
δ (τ2)]}

〉
β

(121)

and

S(αβ; γδ) = δαδSγβ − δβγSαδ = −〈[̂bαb̂+
β , b̂γ b̂+

δ ]−〉β . (122)

It is noted here that similar to the definition in Eq. (96), the normal product N [̂bρ(τ1)̂b+
σ (τ1)âλ(τ1)] in Eq. (121) is

defined as

N [̂bρ(τ1)̂b+
σ (τ1)âλ(τ1)] = T [̂bρ(τ1)̂b+

σ (τ1)âλ(τ1)]− Λ(ρσλ) (123)

where

Λ(ρσλ) =
〈
T [̂bρ(τ1)̂b+

σ (τ1)âλ(τ1)]
〉

β
. (124)

Substituting Eqs. (96) and (1123) into Eq. (121), we have
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G(ρσλ; γδ; τ1 − τ2) = G(ρσλ; γδ; τ1 − τ2)− Λ(ρσλ)Sγδ (125)

where

G(ρσλ; γδ; τ1 − τ2) =
〈
T{b̂ρ(τ1)̂b+

σ (τ1)âλ(τ1)̂bγ(τ2)̂b+
δ (τ2)}

〉
β

(126)

is the ordinary five-point thermal Green function including a gluon operator in it.
By the well-known argument, it is easy to prove that the Green functions G(αβ; γδ; τ1− τ2) and G(ρσλ; γδ; τ1− τ2)

are periodic. Therefore, we have the following Fourier expansions:

G(αβ; γδ; τ) = 1
β

∑
n
G(αβ; γδ;ωn)e−iωnτ ,

G(ρσλ; γδ; τ) = 1
β

∑
n
G(ρσλ; γδ;ωn)e−iωnτ (127)

where τ = τ1 − τ2 and ωn = 2πn
β . Upon inserting Eq. (127) into Eq. (120) and performing the integration

1
2

∫ β

−β
dτeiωnτ , we arrive at

(iωn − θαεα + θβεβ)G(αβ; γδ;ωn)
= −S(αβ; γδ) +

∑
ρσλ

f(αβ; ρσλ)G(ρσλ; γδ;ωn). (128)

It is well-known that the Green function G(ρσλ; γδ;ωn) is B-S (two-particle) reducible. Therefore, we can write
∑

λτρ

f(αβ; ρσλ)G(ρσλ; γδ;ωn) =
∑
µν

K(αβ;µν;ωn)G(µν; γδ;ωn) (129)

where K(αβ;µν;ωn) is called interaction kernel. Thus, Eq. (128) can be written in a closed form

(iωn − θαεα + θβεβ)G(αβ; γδ;ωn) = −S(αβ; γδ) +
∑
µν

K(αβ;µν;ωn)G(µν; γδ;ωn). (130)

Now, let us turn to the equation satisfied by qq bound states. This equation can be derived from Eq. (130) with
the aid of the following Lehmann representation of the four-point Green function which may be derived by expanding
the time-ordered product in Eq. (95) and then inserting the complete set of qq bound states into Eq. (95) ,

G(αβ; γδ;ωl) =
1
2
eβΩ

∑
mn

∆mn{χnm(αβ)χmn(γδ)
iωl − Enm

− χnm(γδ)χmn(αβ)
iωl + Enm

} (131)

where

χnm(αβ) =
〈
m

∣∣∣N [̂bαb̂+
β ]

∣∣∣ n
〉

(132)

which is the transition amplitude from the state with energy En to the state with energy Em and

∆nm = e−βEn − e−βEm . (133)

Upon substituting Eq. (131) into Eq. (130) and then taking the limit: limiωl→Enm(iωl − Enm), we get the following
equation satisfied by the transition amplitude

(Enm − θαεα + θβεβ)χnm(αβ) =
∑

γδ

K(αβ; γδ;Enm)χnm(γδ) (134)

where the fact that the function S(αβ; γδ) has no bound state poles has been considered. If we take | m〉 to be the
vacuum state | 0〉 and set E = En0 and χn(αβ) =

〈
0

∣∣∣N [̂bαb̂+
β ]

∣∣∣ n
〉
, we can write from the above equation that

(E − θαεα + θβεβ)χn(αβ) =
∑

γδ

K(αβ; γδ;E)χn(γδ). (135)
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where the subscript n in En has been suppressed. This just is the equation satisfied by the qq bound states at finite
temperature.

Since the index α contains θα = ±, Eq. (135) actually is a set of coupled equations for the amplitudes χn(α+β−),
χn(α−β+), χn(α+β+) and χn(α−β−). Following the procedure described in Refs. (16) and (17), one may reduce
the above equation to an equivalent equation satisfied by the amplitude of positive energy. We do not repeat the
derivation here. We only show the result as follows:

[E − ε(~kα)− ε(~kβ)]ψ(αβ;E) =
∑

γδ

V (αβ; γδ;E)ψ(γδ;E). (136)

where ψ(αβ;E) = χn(α+β−) and V (αβ; γδ;E) is the interaction Hamiltonian which can be expressed as

V (αβ; γδ;E) =
∑
n=0

V (n)(αβ; γδ;E), (137)

in which

V (0)(αβ; γδ;E) = K++++(αβ; γδ;E), (138)

V (1)(αβ; γδ;E) =
∑

ab 6=++

∑
ρσ

K++ab(αβ; ρσ;E)Kab++(ρσ; γδ;E)

E − aε(~kρ)− bε(~kσ)
, (139)

V (2)(αβ; γδ;E)
=

∑
ab 6=++

∑
cd6=++

∑
ρσ

∑
µν

K++ab(αβ;ρσ;E)Kabcd(ρσ;µν;E)Kcd++(µν;γδ;E)

(E−aε(~kρ)−bε(~kσ))(E−cε(~kµ)−dε(~kν))
,

· · · · · · .
(140)

here a, b = ±, and

K++++(αβ; γδ;E) = K(α+β−; γ+δ−;E),
K−−−−(αβ; γδ;E) = K(α−β+; γ−δ+;E)
K+−+−(αβ; γδ;E) = K(α+β+; γ+δ+;E),
K−+−+(αβ; γδ;E) = K(α−β−; γ−δ−;E).

(141)

IV. CLOSED EXPRESSION OF THE INTERACTION KERNEL IN THE EQUATION FOR QQ BOUND
STATES

In this section, we are devoted to deriving a closed expression of the interaction kernel appearing in Eq. (135)
and defined in Eq. (127). For this derivation, we need equations of motion which describe evolution of the Green
functions G(αβ; γδ; τ1 − τ2) and G(αβσ; γδ; τ1 − τ2) with time τ2. Taking the derivatives of the generating functional
in Eq. (100) with respect to b∗γ(τ2) and bδ(τ2) respectively, by the same procedure as described in the derivation of
Eq. (103), one may obtain

{ d

dτ2

δ

δη∗γ(τ2)
+ θγεγ

δ

δη∗γ(τ2)
+

∑

ρλ

θγθρA(γρλ)
δ2

δη∗ρ(τ2)δj∗λ(τ2)
− ηγ(τ2)}Z[j] = 0. (142)

and

{ d

dτ2

δ

δηδ(τ2)
− θδεδ

δ

δηδ(τ2)
−

∑

σλ

θδθσA(σδλ)
δ2

δησ(τ2)δj∗λ(τ2)
− η∗δ (τ2)}Z[j] = 0. (143)

Performing differentiations of Eqs. (142) and (143) with respect to the sources ηδ(τ2) and η∗γ(τ2) respectively, we get

{( d
dτ2

δ
δη∗γ(τ2)

) δ
δηδ(τ2)

+ θγεγ
δ2

δη∗γ(τ2)δηδ(τ2)
+

∑
ρλ

θγθρA(γρλ) δ3

δη∗ρ(τ2)δηδ(τ2)δj∗λ(τ2)

+δγδ − ηγ(τ2) δ
δηδ(τ2)

}Z[j] = 0
(144)
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and

{ δ
δη∗γ(τ2)

( d
dτ2

δ
δηδ(τ2)

)− θδεδ
δ

δη∗γ(τ2)δηδ(τ2)
−∑

σλ

θδθσA(σδλ) δ3

δη∗γ(τ2)δησ(τ2)δj∗λ(τ2)

−δγδ + η∗δ (τ2) δ
δη∗γ(τ2)

}Z[j] = 0.
(145)

Furthermore, by successively differentiating Eqs. (144) and (145) with respect to the sources η∗α(τ1) and ηβ(τ1), one
obtains

{ δ2

δη∗α(τ1)δηβ(τ1)
( d

dτ2

δ
δη∗γ(τ2)

) δ
δηδ(τ2)

+ θγεγ
δ4

δη∗α(τ1)δηβ(τ1)δη∗γ(τ2)δηδ(τ2)

+
∑
λσ

θγθλA(γρλ) δ5

δη∗α(τ1)δηβ(τ1)δη∗ρ(τ2)δηδ(τ2)δj∗λ(τ2)
+ δγδ

δ2

δη∗α(τ2)δηβ(τ2)

−δβγδ(τ1 − τ2) δ2

δη∗α(τ1)δηδ(τ2)
− ηγ(τ2) δ3

δη∗α(τ1)δηβ(τ1)δηδ(τ2)
}Z[j] = 0

(146)

and

{ δ3

δη∗α(τ1)δηβ(τ1)δη∗γ(τ2)
( d

dτ2

δ
δηδ(τ2)

)− θδεδ
δ4

δη∗α(τ1)δηβ(τ1)δη∗γ(τ2)δηδ(τ2)

−∑
σλ

θδθσA(σδλ) δ5

δη∗α(τ1)δηβ(τ1)δη∗γ(τ2)δησ(τ2)δj∗λ(τ2)
− δγδ

δ2

δη∗α(τ2)δηβ(τ2)

+δαδδ(τ1 − τ2) δ2

δη∗γ(τ2)δηβ(τ1)
+ η∗δ (τ2) δ3

δη∗α(τ1)δηβ(τ1)δη∗γ(τ2)
}Z[j] = 0.

(147)

Let us sum up Eqs. (144) and (145) at first, then multiply the both sides of the equation thus obtained with −θγθδ

and finally set all the sources but the source jλ to vanish. By these operations, we get
∑
ρσ

H(γδ; ρσ; τ2)jλSjλ
ρσ = 0 (148)

where

H(γδ; ρσ; τ2)jλ = (
d

dτ2
+ θγεγ − θδεδ)δγρδδσ −

∑

λ

f(ρσλ; γδ)
δ

δj∗λ(τ2)
(149)

in which

f(ρσλ; γδ) = A(σδλ)δγρ −A(γρλ))δδσ = −f(γδ; ρσλ) (150)

and Sjλ
ρσ was defined in Eq. (110).

When we sum up Eqs. (146) and (147), then multiply the both sides of the equation thus obtained with θαθβθγθδ

and finally set all the sources but the source jλ to be zero, according to the definitions in Eqs. (115) and (116), it is
found that

∑
ρσ

H(γδ; ρσ; τ2)jλG(αβ; γδ; τ1 − τ2)jλ = δ(τ1 − τ2)[δαδSγβ(τ2 − τ1)jλ − δβγSαδ(τ1 − τ2)jλ ]. (151)

In order to derive the equation of motion satisfied by the Green function G(λτσ; γδ; τ1 − τ2) defined in Eq. (126),
we may take the derivative of Eq. (151) with respect to j∗λ(τ1). In this way, we get

∑
ρσ

H(γδ; ρσ; τ2)jλG(αβλ; γδ; τ1 − τ2)jλ = δ(τ1 − τ2)[δαδΛ(γβρ; τ2 − τ1)jλ − δβγΛ(αδρ; τ1 − τ2)jλ ] (152)

where

Λ(γβρ; τ2 − τ1)jλ =
δ

δj∗λ(τ1)
Sγβ(τ2 − τ1)jλ , (153)

Λ(αδρ; τ1 − τ2)jλ =
δ

δj∗λ(τ1)
Sαδ(τ1 − τ2)jλ (154)

and
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G(αβλ; γδ; τ1 − τ2) =
δ

δj∗λ(τ1)
G(αβ; γδ; τ1 − τ2)jλ . (155)

Acting on Eqs. (98) and (125) with the operator H(γδ; ρσ; τ2) and employing Eq. (148), we find
∑
ρσ

H(γδ; ρσ; τ2)jλG(αβ; ρσ; τ1 − τ2)jλ =
∑
ρσ

H(γδ; ρσ; τ2)jλG(αβ; ρσ; τ1 − τ2)jλ (156)

and
∑
ρσ

H(γδ; ρσ; τ2)jλG(αβλ; ρσ; τ1 − τ2)jλ =
∑
ρσ

H(γδ; ρσ; τ2)jλG(αβλ; ρσ; τ1 − τ2)jλ . (157)

The above two equalities further indicate that the equations of motion satisfied by the Green functions G(αβ; ρσ; τ1−
τ2)jλ and G(αβλ; ρσ; τ1 − τ2)jλ are formally the same as those for the ordinary Green functions G(αβ; ρσ; τ1 − τ2)jλ

and G(αβλ; ρσ; τ1 − τ2)jλ respectively. Upon inserting Eqs. (151) into Eq. (156) and Eq. (152) into Eq. (157) and
turning off the source jλ, noticing the definition in Eq. (149), we derive the following equations

( d
dτ2

+ θγεγ − θδεδ)G(αβ; γδ; τ1 − τ2) = δ(τ1 − τ2)[δαδSγβ(τ2 − τ1)
−δβγSαδ(τ1 − τ2)] +

∑
λτσ

G(αβ;λτσ; τ1 − τ2)f(λτσ; γδ) (158)

and

( d
dτ2

+ θγεγ − θδεδ)G(αβρ; γδ; τ1 − τ2) = δ(τ1 − τ2)[δαδΛ(γβρ; τ2 − τ1)
−δβγΛ(αδρ; τ1 − τ2)] +

∑
λτσ

G(αβρ;λτσ; τ1 − τ2)f(λτσ; γδ) (159)

where some indices have been changed for convenience,

Λ(γβρ; τ2 − τ1) =
〈
T [̂bγ(τ2)̂b+

β (τ1)âρ(τ1)]
〉

β

Λ(αδρ; τ1 − τ2) =
〈
T [̂bα(τ1)̂b+

δ (τ2)âρ(τ1)]
〉

β

(160)

which are given by Eqs. (153) and (154) with setting jλ = 0 and

G(λτρ; γδσ; τ1 − τ2) = δ2

δj∗ρ (τ1)δj∗σ(τ2)
G(λτ ; γδ; τ1 − τ2)jλ |jλ=0

=
〈
T{N [̂bλ(τ1)̂b+

τ (τ1)âρ(τ1)]N [̂bγ(τ2)̂b+
δ (τ2)âσ(τ2)]}

〉
β

(161)

is the six-point Green function including two gluon operators in it. According to the definition in Eq. (123), we have

G(λτρ; γδσ; τ1 − τ2) = G(λτρ; γδσ; τ1 − τ2)− Λ(λτρ)Λ(γδσ) (162)

where

G(λτρ; γδσ; τ1 − τ2) = 〈T [̂bλ(τ1)̂b+
τ (τ1)âρ(τ1)̂bγ(τ2)̂b+

δ (τ2)âσ(τ2)]〉β (163)

is the ordinary six-point Green function. It should be noted that due to the restriction of the delta function, the
terms in the brackets on the right hand sides of Eqs. (158) and (159) actually are ”time”-independent.

It is easy to see that the Green functions G(αβ;λτσ; τ1 − τ2) and G(λτρ; γδσ; τ1 − τ2), as the Green functions
G(αβ; γδ; τ1−τ2) and G(αβρ; γδ; τ1−τ2), are periodic. Therefore, by the Fourier transformation, i.e. by the integration∫ β

0
dτeiωnτ , noticing d/dτ2 = −d/dτ , Eqs. (158) and (159) will be transformed to

(iωn + θγεγ − θδεδ)G(αβ; γδ;ωn) = S(αβ; γδ)
+

∑
λτσ

G(αβ;λτσ;ωn)f(λτσ; γδ) (164)

where S(αβ; γδ) was defined in Eq. (122) and

(iωn + θγεγ − θδεδ)G(αβρ; γδ;ωn) = R(αβρ; γδ)
+

∑
λτσ

G(αβρ;λτσ;ωn)f(λτσ; γδ) (165)
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where

R(αβρ; γδ) = δαδΛ(γβρ)− δβγΛ(αδρ)
= 〈[̂bαb̂+

β , b̂γ b̂+
δ ]−âρ〉β (166)

which is ”time”-independent.
Now we are ready to derive the interaction kernel. Acting on the both sides of Eq. (129) with (iωn + θγεγ − θδεδ)

and using Eqs. (164) and (165), one gets
∑
µν

K(αβ;µν;ωn)S(µν; γδ) =
∑
λτρ

f(αβ;λτρ)R(λτρ; γδ) +
∑
λτρ

∑
ξησ

f(αβ;λτρ)

×G(λτρ; ξησ;ωn)f(ξησ; γδ)−∑
µν

∑
ξησ

K(αβ;µν;ωn)G(αβ; ξησ;ωn)f(λτσ; γδ). (167)

Operating on the both sides of Eq. (129) with the inverse of G(µν; γδ;ωn), we have

K(αβ; γδ;ωn) =
∑

γδ

∑

λτσ

f(αβ;λτρ)G(λτρ;µν;ωn)G−1(µν; γδ;ωn). (168)

Upon substituting Eq. (168) onto the right hand side of Eq. (167) and acting on Eq. (167) with the inverse
S−1(µν; γδ), we eventually arrive at

K(αβ; γδ;E) =
∑
µν
{∑

λτρ

f(αβ;λτρ)R(λτρ;µν) +
∑
λτρ

∑
ξησ

f(αβ;λτρ)G(λτρ; ξησ;E)f(ξησ;µν)

− ∑
λτρ

∑
ξησ

∑
κς

∑
πθ

f(αβ;λτρ)G(λτρ;κς;E)G−1(κς;πθ;E)G(πθ; ξησ;E)f(ξησ;µν)}S−1(µν; γδ) (169)

where ωn has been replaced by E. This just is the wanted closed expression of the interaction kernel appearing in
Eq. (135). In accordance with Eq. (129), the last term in Eq. (169) can be written in the form

∑
ρσ

∑

ξη

∑
µν

K(αβ; ρσ;E)G(ρσ; ξη;E)K(ξη;µν;E)S−1(µν; γδ) (170)

which exhibits a typical B-S reducible structure. Therefore, the last term in Eq. (16) plays the role of cancelling the
B-S reducible part contained in the other terms in Eq. (169) to make the kernel to be B-S irreducible. If we use the
above expression in place of the last term in Eq. (169) and acting on Eq. (169) with S(γδ;µν), we obtain from Eq.
(169) an integral equation satisfied by the kernel K(αβ; γδ;E). Define

R(αβ; γδ) =
∑

λτρ

f(αβ;λτρ)R(λτρ; γδ) (171)

and

Q(αβ; γδ) =
∑

λτρ

∑

ξησ

f(αβ;λτρ)G(λτρ; ξησ;E)f(ξησ; γδ), (172)

the integral equation can be written in the matrix form as follows

KS = R+Q−KGK. (173)

For comparison with the kernel in Eq. (169) and for convenience of nonperturbative investigations, we would like
to show the corresponding closed expression given in the position space without giving derivation. This kernel can be
obtained from the kernel in Eq. (169) by making use of the inverse of the Fourier transformations written in sect. 3
or derived from the generating functional represented in the position space by completely following the procedure as
described in this section. The kernel is represented as follows:

K(~x1,~x2; ~y1, ~y2;E) =
∫

d3z1d
3z2{R(~x1,~x2;~z1, ~z2)

+Q(~x1,~x2;~z1, ~z2;E)−D(~x1,~x2;~z1, ~z2;E)}S−1(~z1, ~z2; ~y1, ~y2)
(174)

where R(~x1,~x2;~z1, ~z2),Q(~x1, ~x2;~z, , ~z2;E) and D(~x1, ~x2;~z1, ~z2;E) are separately described below.
The function R(~x1,~x2;~z1, ~z2) can be represented as
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R(~x1, ~x2;~z1, ~z2) =
2∑

i=1

Ωaµ
i R(i)a

µ (~x1,~x2;~z1, ~z2) (175)

in which

Ωaµ
1 = igγ4

1γµ
1 T a

1 , Ωbν
2 = igγ4

2γν
2 T

b

2 (176)

with T a
1 = λa/2 and T

b

2 = −λa∗/2 being the quark and antiquark color matrices respectively and

R(i)a
µ (~x1, ~x2;~z1, ~z2) = δ3(~x1 − ~z1)γ4

1Λca
µ (~xi | ~x2, ~z2) + δ3(~x2 − ~z2)γ4

2Λa
µ(~xi | ~x1, ~z1) (177)

here Λa
µ(~xi | ~x1, ~y1) and Λca

µ (~xi | ~x2, ~y2) are defined as

Λa
µ(~xi | ~x1, ~y1) = 〈T [Aa

µ(~xi, τ1)ψ(~x1, τ1)ψ(~y1, τ1)]〉β ,

Λca
µ (~xi | ~x2, ~y2) = 〈T [Aa

µ(~xi, τ1)ψc(~x2, τ1)ψ
c
(~y2, τ1)]〉β (178)

which are time-independent due to the translation-invariance property of the Green functions.
The function is of the form

Q(~x1, ~x2;~z1, ~z2;E) =
2∑

i,j=1

Ωaµ
i Gab

µν(~xi, ~zj | ~x1, ~x2;~z1, ~z2;E)Ω
bν

j (179)

in which

Ω
aµ

1 = igγµ
1 γ4

1T a
1 , Ω

aµ

2 = igγµ
2 γ4

2T
a

2 , (180)

Gab
µν(~xi, ~zj | ~x1, ~x2;~z1, ~z2;E) is the Fourier transform of the Green function defined by

Gab
µν(~xi, ~zj | ~x1, ~x2;~z1, ~z2; τ1 − τ2)

= 〈T{N [Aa
µ(~xi, τ1)ψ(~x1, τ1)ψc(~x2, τ1)]N [Ab

ν(~zj , τ2)ψ(~z1, τ2)ψ
c
(~z2, τ2)]}〉β (181)

The function D(~x1, ~x2;~z1, ~z2;E) is expressed by

D(~x1, ~x2;~z1, ~z2;E) =
∫ 2∏

k=1

d3ukd3vk

2∑
i,j=1

Ωaµ
i G(i)a

µ (~xi | ~x1, ~x2; ~u1, ~u2;E)

×G−1(~u1, ~u2;~v1, ~v2;E)G(j)b
ν (~zj | ~v1, ~v2;~z1, ~z2;E)Ω

bν

j

(182)

in which G(i)a
µ (~xi | ~x1, ~x2; ~u1, ~u2;E) and G(j)b

ν (~zj | ~v1, ~v2;~z1, ~z2;E) are the Fourier transforms of the following Green
functions

G(i)a
µ (~xi | ~x1, ~x2; ~u1, ~u2; τ1 − τ2)

= 〈T{N [Aa
µ(~xi, τ1)ψ(~x1, τ1)ψc(~x2, τ1)]N [ψ(~u1, τ2)ψ

c
(~u2, τ2)]}〉β

(183)

and

G(j)b
ν (~zj | ~v1, ~v2;~z1, ~z2; τ1 − τ2)

= 〈T{N [ψ(~v1, τ1)ψc(~v2, τ1)]N [Ab
ν(~zj , τ2)ψ(~z1, τ2)ψ

c
(~z2, τ2)]}〉β

(184)

The S−1(~z1, ~z2; ~y1, ~y2) in Eq. (174) is the inverse of the function defined by

S(~x1, ~x2;~z1, ~z2) = δ3(~x1 − ~z1)γ4
1Sc

F (~x2 − ~z2) + δ3(~x2 − ~z2)γ4
2SF (~x1 − ~z1) (185)

in which SF (~x1 − ~z1) and Sc
F (~x2 − ~z2) are the equal-time quark and antiquark thermal propagators respectively. It is

clear that there is one-to-one correspondence between the both kernels written in Eqs. (169) and (174). It is noted
that the interaction kernel derived in this section is nonperturbative because the Green functions included in the
kernel are defined in the Heisenberg picture. Perturbative calculations of the kernel can easily be done by using the
familiar perturbative expansions of Green functions. .
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