Galaxy Rotation Curves from String Theory

Yeuk-Kwan Edna Cheung 张若筠 Dept. of Physics, Nanjing U.

CPS2006, Autumn Meeting

◆ | ◆

• String Theory is:

- A theory of Everything? too many assumptions; everything seems possible!
- A theory of Quantum Gravity? provides the needed fundamental theory for cosmology? yet to make contact with observation.
- A theory good for Nothing? spectacular success in mathematics over the past decade. no experimental support whatsoever...

20

DM & DE are the two main roadblocks on our path to a comprehensive fundamental theory of Nature.

0.8

0.2

Mass densit

1.0

0.5

Decelerating

universe

0.6

0.6

0.4

REDSHIFT z

LINEAR SCALE OF THE UNIVERSE RELATIVE TO TODAY

0.7

◆ | ◆

• Dark Matter:

- baryonic or non-baryonic;
- well-founded or exotic;
- MOND: modification of Newtonian dynamics at large scale;
- existent fields/long range force from String Theory; exploit their low energy implications.

In a leap of faith...

(n)

- If matter is indeed made of strings, they will *all* be charged under this "gravi-magnetic" field.
- In the presence of such background field, galaxies will execute Landau orbits.

• provides the extra centripetal force, which would otherwise be attributed to extra mass:

 $m\frac{v^2}{r} = QH_zv + \frac{G_NMm}{r^2}$

extra mass -> Dark Matter

Parametric Modeling of the Mass Distribution

• Van Der Kruit & Searle's Formula: $\rho(r,z) = \rho_0 \exp(-\frac{r}{R_d}) \operatorname{sech}^2(\frac{6z}{R_d})$

for the visible stellar disk and spheroid.

• introduce three parameters: Ω , ρ , and R_d . $v^2 = R_{obs} \Omega v + R_{obs} \rho \tilde{E}(\tilde{r})$

where $\tilde{E}(\tilde{r})$ is dimensionless.

• data: <u>http://www.astro.umontreal.ca/fantomm/sings/index.htm</u>

· ·			D :			118
Û	Galaxy	Likelihood	Rd	rho	Omega	
	ngc0628	1.29	29.67	847.01	0.39	
	ngc0925	2.52	285.68	128.63	0.00	
	ngc2403	4.19	31.19	142.06	0.22	
	ngc3031	0.07	8.47	41.92	0.00	
	ngc3184	0.36	69.54	327.88	0.18	
	ngc3198	0.27	60.41	408.20	0.11	
	ngc3521	0.51	26.67	2197.00	0.33	
	ngc4236	0.32	350.00	6.01	0.12	
	ngc4321	2.00	27.37	1360.15	0.60	
	ngc4536	0.73	45.90	551.03	0.19	
	ngc4569	0.63	16.78	789.54	1.01	
	ngc4579	0.50	43.88	2171.41	0.00	
	ngc5055	3.16	30.59	1914.81	0.21	
	ngc5194	0.60	24.35	507.39	0.15	
	ngc5713	2.72	20.00	454.78	0.00	
	ngc 6946	5.75	56.81	293.73	0.23	

Â	ho(r,z)	$z) = \rho_0 \exp(-$	$(\frac{r}{R_d}) sech^2(\frac{6z}{R_d})$) 💠 🜩			
	Galaxy	Rd	rho	Mass (M sun)2			
	ngc0628	29.67	847.01	4.19E+11			
	ngc0925	285.68	128.63	5.90E+12			
	ngc2403	31.19	142.06	7.77E+10			
	ngc303 l	8.47	41.92	1.69E+9			
	ngc3184	69.54	327.88	8.91E+11			
	ngc3198	60.41	408.20	8.37E+11			
	ngc3521	26.67	2197.00	8.78E+11			
	ngc4236	350.00	6.01	4.13E+11			
	ngc4321	27.37	1360.15	5.72E+11			
	ngc4536	45.90	551.03	6.52E+11			
	ngc4569	16.78	789.54	1.24E+11			
	ngc4579	43.88	2171.41	2.35E+12			
	ngc5055	30.59	1914.81	1.01E+12			
	ngc5194	24.35	507.39	1.69E+11			
	ngc5713	20.00	454.78	1.02E+11			
	ngc 6946	56.81	293.73	5.32E+11			
	$G_{Newton} = 4.32 \times 10^{-6} \left(\frac{km}{c}\right)^2 kpc/M_{sun}$						

Frank C. van den Bosch et al, astro-ph/9911372

Galaxy	Σ_0 M $\mathrm{p}e^{-2}$	R_d	eta	R_c h^{-1} lmc	$\log(M_{\rm HI})$ h^{-2} M
(1)	(2)	(3) (3)	(4)	(5) n_{70} kpc	$n_{70} \mathrm{M}_{\odot}$ (6)
F563-1	8.59	10.63	0.20	26.37	9.644
F568-1	4.55	1.97	3.43	16.98	9.674
F568-3	11.52	3.46	1.78	19.45	9.524
F568-V1	11.55	5.24	1.39	15.91	9.464
F574-1	2.16	3.13	3.51	18.71	9.649
F583-1	9.38	2.77	2.09	16.18	9.401
NGC 247	4.24	0.56	7.89	8.63	8.912
DDO 154	14.38	1.53	0.52	6.17	8.383
NGC 3109	8.28	3.08	0.32	12.92	8.713

Table 2. Parameters of best fits to HI surface brightness.

Note. — Column (1) lists the name of the galaxy. Columns (2) through (5) list the best fitting parameters for the HI surface density, and column (6) lists the corresponding HI mass.

Galaxy	Model	α	с	V_{200}	Υ_B	$f_{ m bar}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
F563-1	BF	2.00	5.2	73.5	0.0	0.039
F568-1	BF	1.97	5.8	64.0	6.2	0.369
F568-3	BF	1.18	3.4	127.7	0.5	0.010
F568-V1	BF	0.47	15.6	91.6	0.9	0.023
F574-1	$_{ m BF}$	0.26	8.6	118.3	1.0	0.018
	a	1.30	8.6	76.4	1.0	0.067
	b	0.26	8.6	55.7	6.0	0.537
	с	0.80	2.0	278.8	1.0	0.001
F583-1	$_{\mathrm{BF}}$	0.00	20.6	65.7	0.0	0.035
NGC 247	BF	1.02	7.2	93.1	1.0	0.011
DDO 154	$_{ m BF}$	0.00	14.7	44.0	0.0	0.011
NGC 3109	BF	0.00	10.2	101.6	0.0	0.002

Table 3. Parameters of fits to rotation curves.

Note. — Column (1) lists the name of the galaxy. Columns (2) lists the ID of the model, with 'BF' indicating the best-fit model (i.e., the one that minimizes $\chi^2_{\rm vel}$). For F574-1 three additional models are listed (a, b, and c) all of which fall within the 68.3 confidence level of the BF-model (see contour plots in Figure 4). Columns (3) through (5) list parameters of the model: c, Υ_B (in $h_{70} \,\mathrm{M_{\odot}/L_{\odot}}$), and V_{200} (in km s⁻¹). Finally, column (7) gives the resulting baryon fraction $f_{\rm bar} = (M_{\rm gas} + M_{\rm stars})/M_{200}$

Comments:

- only 3 parameters vs the usual 8
- masses of the galaxies obtained
 - cross-check with photometric method In progress
- effective field theory... In progress

I have pushed the limits of the model...

Perhaps a happy ending:

- Theoretically well-motivated, (very ordinary) Dark Matters:
 - black holes

- small stars (not burning hydrogen)
- A little bit of String Gauge Fields

in a happy union!

