RGE Running of Leptonic CP-Violating Phases

Talk by Luoshu (IHEP) @ Guilin, Guangxi

Why RGEs ?

High Energy

- •Unified Theory
- Flavor Symmetries

Why RGEs ?

High Energy

- •Unified Theory
- Flavor Symmetries

Low Energy

Precise Neutrino
 Experiments

Why RGEs ?

High Energy

- Unified Theory
- Flavor Symmetries

Low Energy

Precise Neutrino
 Experiments

Why RGEs ?

High Energy

- Unified Theory
- Flavor Symmetries

RG Running

provide a window to physics at very high energy scales

Low Energy

Precise Neutrino
 Experiments

needed by precise tests of unified flavor models in the future

Content

- RGEs below the seesaw scale
- Radiative generation of three phases
- Quasi-fixed point of δ in the RGE running
- Summary

Content

- RGEs below the seesaw scale
- Radiative generation of three phases
- Quasi-fixed point of δ in the RGE running

Summary

S. Luo, J. W. Mei, Z. Z. Xing, hep-ph/0507065 (PRD, 2005)
S. Luo, Z. Z. Xing, hep-ph/0509065 (PLB, 2006)
S. Luo, Z. Z. Xing, hep-ph/0603091 (PLB, 2006)

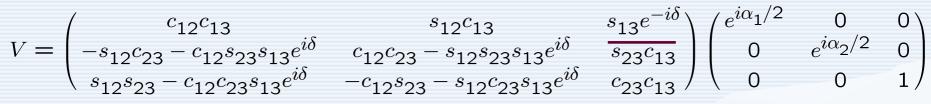
RGEs Below the Seesaw Scale

The effective Lagrangian:

 $-\mathcal{L} = \overline{E_L} H_1 Y_l l_R - \frac{1}{2} \overline{E_L} H_2 \cdot \kappa \cdot H_2^{c\dagger} E_L^c + \text{h.c.}$ after SSB at EW scale: $M_l = v Y_l \cos \beta, \ M_\nu = v^2 \kappa \sin^2 \beta$ (Here $\tan\beta = \langle H_2 \rangle / \langle H_1 \rangle$ in the MSSM)

One-loop renormalization equation of κ

$$\underline{16\pi^{2}\frac{\mathrm{d}\kappa}{\mathrm{d}t}} = \alpha\kappa + \left(Y_{l}Y_{l}^{\dagger}\right)\kappa + \kappa\left(Y_{l}Y_{l}^{\dagger}\right)^{T} \qquad (t \equiv \ln(\mu/\Lambda_{\mathrm{SS}}))$$


with $\alpha = -\frac{6}{5}g_1^2 - 6g_2^2 + 6(y_u^2 + y_c^2 + y_t^2)$, (g₁, g₂ denote the gauge couplings)

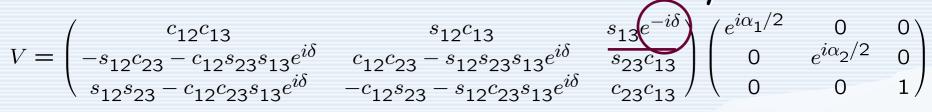
For more details: Babu *et al*, hep-ph/9309223, (PLB, 1993); Chankowski *et al*, hep-ph/9306333, (PLB, 1993); and for full scale, e.g., Antusch *et al*, hep-ph/0501272, (JHEP, 2005).

- In the flavor basis where Y_l is diagonal $\kappa = V \overline{\kappa} V^T$ with $\overline{\kappa} = \text{Diag}\{\kappa_1, \kappa_2, \kappa_3\}$ V is just the Maki-Nakagawa-Sakata matrix, and $m_i = v^2 \kappa_i \sin^2\beta$.
- The RGEs of κ_i (small contributions from y_{μ} , y_e are neglected) $\frac{d\kappa_1}{dt} = \frac{\kappa_1}{16\pi^2} \left[\alpha + 2y_{\tau}^2 \left(s_{12}^2 s_{23}^2 - 2c_{\delta} c_{12} c_{23} s_{12} s_{23} s_{13} + c_{12}^2 c_{23}^2 s_{13}^2 \right) \right]$ $\frac{d\kappa_2}{dt} = \frac{\kappa_2}{16\pi^2} \left[\alpha + 2y_{\tau}^2 \left(c_{12}^2 s_{23}^2 + 2c_{\delta} c_{12} c_{23} s_{12} s_{23} s_{13} + c_{23}^2 s_{12}^2 s_{13}^2 \right) \right]$ $\frac{d\kappa_3}{dt} = \frac{\kappa_3}{16\pi^2} \left[\alpha + 2y_{\tau}^2 c_{23}^2 c_{13}^2 \right]$ $y_{\tau}^2 / (16\pi^2) = m_{\tau}^2 (1 + \tan^2 \beta) / (16\pi^2 v^2) \approx 6.6 \times 10^{-7} (1 + \tan^2 \beta) \text{ in the MSSM}$
- Flavor-dependent RGE running effects are strongly suppressed.
 RGE running behaviors of three neutrino masses are almost identical.

Phase Conventions

Standard Parametrization advocated by PDG

Parametrization advocated by our group


$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -c_{12}s_{23}s_{13} - s_{12}c_{23}e^{-i\delta} & -s_{12}s_{23}s_{13} + c_{12}c_{23}e^{-i\delta} & s_{23}c_{13} \\ -c_{12}c_{23}s_{13} + s_{12}s_{23}e^{-i\delta} & -s_{12}c_{23}s_{13} - c_{12}s_{23}e^{-i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} e^{i\rho} & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Phase relation between two conventions: $\delta = \delta, \rho = \delta + \alpha_1 / 2, \rho = \delta + \alpha_2 / 2,$

three mixing angles in our parametrization equal to their counterparts in the Standard Parametrization.

Phase Conventions

Standard Parametrization advocated by PDG

Parametrization advocated by our group

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}c_{23}c_{13} \\ -c_{12}s_{23}s_{13} - s_{12}c_{23}e^{-i\delta} & -s_{12}s_{23}s_{13} + c_{12}c_{23}e^{-i\delta} & s_{23}c_{13} \\ -c_{12}c_{23}s_{13} + s_{12}s_{23}e^{-i\delta} & -s_{12}c_{23}s_{13} - c_{12}s_{23}e^{-i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} e^{i\rho} & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Phase relation between two conventions: $\delta = \delta, \rho = \delta + \alpha_1 / 2, \rho = \delta + \alpha_2 / 2,$

three mixing angles in our parametrization equal to their counterparts in the Standard Parametrization.

- <u>Similarities</u>
 - 1. three mixing angles have simplest connection with neutrino oscillations (θ_{12} solar, θ_{23} atmospheric, θ_{13} reactor to the leading order).
 - 2. the Jarlskog parameter has the identical expression.

 $\mathcal{J} = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2s_{\delta} \quad , \qquad \mathrm{Im}\left(V_{\alpha i}V_{\beta j}V_{\alpha j}^*V_{\beta i}^*\right) = \mathcal{J}\sum_{\gamma,k}\left(\epsilon_{\alpha\beta\gamma}\epsilon_{ijk}\right)$

<u>Differences</u>

1. the effective mass of the $0\nu\beta\beta$ decay: $\langle m\rangle_{ee} = |m_1V_{11}^2 + m_2V_{12}^2 + m_3V_{13}^2|$ PDG: $\langle m\rangle_{ee} = |m_1c_{12}^2c_{13}^2e^{i\alpha_1} + m_2s_{12}^2c_{13}^2e^{i\alpha_2} + m_3s_{13}^2e^{-2i\delta}|$ dependent on δ , Ours: $\langle m\rangle_{ee} = |m_1c_{12}^2c_{13}^2e^{2i\rho} + m_2s_{12}^2c_{13}^2e^{2i\sigma} + m_3s_{13}^2|$ independent of δ . 2. when $\theta_{13} \rightarrow 0$, δ automatically disappears in the PDG convention, good for discussing the quasi-fixed point of its RGE.

$$\zeta_{ij} \equiv rac{\kappa_i - \kappa_j}{\kappa_i - \kappa_j}$$

$$\begin{aligned} \frac{\mathrm{d}\theta_{12}}{\mathrm{d}t} &= \frac{y_{\tau}^2}{16\pi^2} \left\{ \underbrace{c_{(\rho-\sigma)}}_{\zeta_{12}} \left[c_{(\rho-\sigma)} c_{12} s_{12} \left(s_{23}^2 - c_{23}^2 s_{13}^2 \right) - \left(c_{(\delta+\rho-\sigma)} c_{12}^2 - c_{(\delta-\rho+\sigma)} s_{12}^2 \right) c_{23} s_{23} s_{13} \right] \right. \\ &+ \zeta_{12} s_{(\rho-\sigma)} \left[s_{(\rho-\sigma)} c_{12} s_{12} \left(s_{23}^2 - c_{23}^2 s_{13}^2 \right) - \left(s_{(\delta+\rho-\sigma)} c_{12}^2 + s_{(\delta-\rho+\sigma)} s_{12}^2 \right) c_{23} s_{23} s_{13} \right] \\ &- \left[\frac{c_{\rho}}{\zeta_{13}} \left(c_{(\delta-\rho)} s_{12} s_{23} - c_{\rho} c_{12} c_{23} s_{13} \right) - \zeta_{13} s_{\rho} \left(s_{(\delta-\rho)} s_{12} s_{23} + s_{\rho} c_{12} c_{23} s_{13} \right) \right] c_{23} s_{12} s_{13} \\ &- \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{13} \right) - \zeta_{23} s_{\sigma} \left(s_{(\delta-\sigma)} c_{12} s_{23} - s_{\sigma} c_{23} s_{12} s_{13} \right) \right] c_{12} c_{23} s_{13} \right\} \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}\theta_{23}}{\mathrm{d}t} &= \frac{y_{7}^{2}c_{23}}{16\pi^{2}} \left\{ \left[\frac{c_{(\delta-\rho)}}{\zeta_{13}} \left(c_{(\delta-\rho)}s_{12}s_{23} - c_{\rho}c_{12}c_{23}s_{13} \right) + \zeta_{13}s_{(\delta-\rho)} \left(s_{(\delta-\rho)}s_{12}s_{23} + s_{\rho}c_{12}c_{23}s_{13} \right) \right] s_{12} \right. \\ &+ \left[\frac{c_{(\delta-\sigma)}}{\zeta_{23}} \left(c_{(\delta-\sigma)}c_{12}s_{23} + c_{\sigma}c_{23}s_{12}s_{13} \right) + \zeta_{23}s_{(\delta-\sigma)} \left(s_{(\delta-\sigma)}c_{12}s_{23} - s_{\sigma}c_{23}s_{12}s_{13} \right) \right] c_{12} \right\} \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}\theta_{13}}{\mathrm{d}t} &= \frac{y_{\tau}^2 c_{23}}{16\pi^2} \left\{ -\left[\frac{c_{\rho}}{\zeta_{13}} \left(c_{(\delta-\rho)} s_{12} s_{23} - c_{\rho} c_{12} c_{23} s_{13} \right) - \zeta_{13} s_{\rho} \left(s_{(\delta-\rho)} s_{12} s_{23} + s_{\rho} c_{12} c_{23} s_{13} \right) \right] c_{12} c_{13} \right. \\ &+ \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{13} \right) - \zeta_{23} s_{\sigma} \left(s_{(\delta-\sigma)} c_{12} s_{23} - s_{\sigma} c_{23} s_{12} s_{13} \right) \right] c_{13} s_{12} \right\} \end{aligned}$$

Of three mixing angles, θ_{12} is most sensitive to RGE effects.

• One-loop RGEs of three mixing angles $\zeta_{ij} \equiv \frac{\kappa_i - \kappa_j}{\kappa_i - \kappa_j}$

$$\frac{d\theta_{12}}{dt} = \frac{y_{\tau}^2}{16\pi^2} \left\{ \underbrace{\frac{c_{(\rho-\sigma)}}{\zeta_{12}}}_{(c_{12}-\sigma)} \left[c_{(\rho-\sigma)} c_{12} s_{12} \left(s_{23}^2 - \frac{c_{23}}{\zeta_{23}} - \frac{c_{23}}{\zeta_{23}} - \frac{c_{23}}{\zeta_{23}} - \frac{c_{23}}{\zeta_{23}} - \frac{c_{23}}{\zeta_{23}} - \frac{c_{23}}{\zeta_{23}} \left[c_{(\delta-\rho)} s_{12} s_{23} - c_{\rho} c_{12} c_{23} s_{13} - \frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{13} \right) \right] \right\}$$

$$\frac{d\theta_{23}}{dt} = \frac{y_{\tau}^2 c_{23}}{16\pi^2} \left\{ \left[\frac{c_{(\delta-\rho)}}{\zeta_{13}} \left(c_{(\delta-\rho)} s_{12} s_{23} - c_{\rho} c_{\rho} \right) + \left[\frac{c_{(\delta-\sigma)}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{13} \right) \right] \right\}$$

$$\frac{d\theta_{13}}{dt} = \frac{y_{\tau}^2 c_{23}}{16\pi^2} \left\{ - \left[\frac{c_{\rho}}{\zeta_{13}} \left(c_{(\delta-\rho)} s_{12} s_{23} - c_{\rho} c_{12} \right) \right] + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) \right] \right\}$$

Of three mixing angles, θ_{12} is most sensitive to RGE effects.

Hierarchy
(e.g.,
$$m_1 \ll m_2 \ll m_3$$
 and $m_1 = 10^{-3} \text{ eV}$)
 $\zeta_{12}^{-1} \sim -1.25$, $\zeta_{13}^{-1} \sim -1.0$, $\zeta_{23}^{-1} \sim -1.5$
Degenerate
(e.g., $m_1 \lesssim m_2 \lesssim m_3$ and $m_1 = 0.2 \text{ eV}$)
 $\zeta_{12}^{-1} \sim -2001$, $\zeta_{13}^{-1} \sim -64$, $\zeta_{23}^{-1} \sim -66$

• One-loop RGEs of three mixing angles $\zeta_{ij} \equiv \frac{\kappa_i - \kappa_j}{\kappa_i - \kappa_j}$

$$\frac{d\theta_{12}}{dt} = \frac{y_7^2}{16\pi^2} \left\{ \begin{array}{c} c_{(\rho-\sigma)} \\ \zeta_{12} \end{array} \right] c_{(\rho-\sigma)} c_{12} s_{12} \left(s_{23}^2 - c_{23}^2 - c_{23$$

$$\frac{d\theta_{23}}{dt} = \frac{y_{\tau}^2 c_{23}}{16\pi^2} \left\{ \left[\frac{c_{(\delta-\rho)}}{\zeta_{13}} \left(c_{(\delta-\rho)} s_{12} s_{23} - c_{\rho} c_{\rho} c_{\rho} \right) \right] + \left[\frac{c_{(\delta-\sigma)}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{1} \right) \right] \right\}$$

$$\frac{d\theta_{13}}{dt} = \frac{y_{\tau}^2 c_{23}}{16\pi^2} \left\{ -\left[\frac{c_{\rho}}{\zeta_{13}} \left(c_{(\delta-\rho)} s_{12} s_{23} - c_{\rho} c_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{23} s_{12} s_{12} + c_{\sigma} c_{23} s_{12} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{23} s_{12} s_{12} + c_{\sigma} c_{23} s_{12} s_{12} s_{12} \right) + \left[\frac{c_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{23} s_{12} s_{$$

• Hierarchy (e.g., $m_1 \ll m_2 \ll m_3$ and $m_1 = 10^{-3} \text{ eV}$) $\zeta_{12}^{-1} \sim -1.25$, $\zeta_{13}^{-1} \sim -1.0$, $\zeta_{23}^{-1} \sim -1.5$ • Degenerate

(e.g.,
$$m_1 \gtrsim m_2 \gtrsim m_3$$
 and $m_1 = 0.2 \text{ eV}$)
 $\zeta_{12}^{-1} \sim -2001, \quad \zeta_{13}^{-1} \sim -64, \quad \zeta_{23}^{-1} \sim -66$

• RGE evolution has strong effects on neutrino mixing parameters only in the case that three neutrino masses are nearly degenerate.

Of three mixing angles, θ_{12} is most sensitive to RGE effects.

• One-loop RGE of δ

$$\begin{aligned} \frac{\mathrm{d}\delta}{\mathrm{d}t} &= \frac{y_{\tau}^2}{16\pi^2} \left\{ \frac{s_{(\rho-\sigma)}}{\zeta_{12}} \left[c_{(\rho-\sigma)} \left(s_{23}^2 - c_{23}^2 s_{13}^2 \right) - \left(c_{(\delta+\rho-\sigma)} c_{12}^2 - c_{(\delta-\rho+\sigma)} s_{12}^2 \right) \frac{c_{23} s_{23} s_{13}}{c_{12} s_{12}} \right] \right. \\ &- \zeta_{12} c_{(\rho-\sigma)} \left[s_{(\rho-\sigma)} \left(s_{23}^2 - c_{23}^2 s_{13}^2 \right) - \left(s_{(\delta+\rho-\sigma)} c_{12}^2 + s_{(\delta-\rho+\sigma)} s_{12}^2 \right) \frac{c_{23} s_{23} s_{13}}{c_{12} s_{12}} \right] \right. \\ &+ \frac{1}{\zeta_{13}} \left(c_{(\delta-\rho)} s_{12} s_{23} - c_{\rho} c_{12} c_{23} s_{13} \right) \left[\frac{s_{\rho} c_{23}}{c_{12} s_{13}} \left(c_{12}^2 - s_{12}^2 s_{13}^2 \right) - s_{(\delta-\rho)} \frac{s_{12}}{s_{23}} \left(c_{23}^2 - s_{23}^2 \right) \right] \right. \\ &+ \zeta_{13} \left(s_{(\delta-\rho)} s_{12} s_{23} + s_{\rho} c_{12} c_{23} s_{13} \right) \left[\frac{c_{\rho} c_{23}}{c_{12} s_{13}} \left(c_{12}^2 - s_{12}^2 s_{13}^2 \right) + c_{(\delta-\rho)} \frac{s_{12}}{s_{23}} \left(c_{23}^2 - s_{23}^2 \right) \right] \\ &- \frac{1}{\zeta_{23}} \left(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{13} \right) \left[\frac{s_{\sigma} c_{23}}{s_{12} s_{13}} \left(s_{12}^2 - c_{12}^2 s_{13}^2 \right) + s_{(\delta-\sigma)} \frac{c_{12}}{s_{23}} \left(c_{23}^2 - s_{23}^2 \right) \right] \\ &- \zeta_{23} \left(s_{(\delta-\sigma)} c_{12} s_{23} - s_{\sigma} c_{23} s_{12} s_{13} \right) \left[\frac{c_{\sigma} c_{23}}{s_{12} s_{13}} \left(s_{12}^2 - c_{12}^2 s_{13}^2 \right) - c_{(\delta-\sigma)} \frac{c_{12}}{s_{23}} \left(c_{23}^2 - s_{23}^2 \right) \right] \right\} \end{aligned}$$

- The RGE evolution of δ depends on ρ and σ while the RGE evolution of ρ and σ depends on $\delta.$
- Three CP-violating phases entangled with one another in the one-loop RGE evolution. That's why radiactive generation of δ , ρ , σ is in general possible.

- One-loop RGEs of ρ,σ

$$\begin{split} \frac{\mathrm{d}\rho}{\mathrm{d}t} &= \frac{y_{7}^{2}}{16\pi^{2}} \left\{ \frac{s_{(\rho-\sigma)}}{\zeta_{12}} \left[c_{(\rho-\sigma)}c_{12}s_{12} \left(s_{23}^{2} - c_{23}^{2}s_{13}^{2} \right) - \left(c_{(\delta+\rho-\sigma)}c_{12}^{2} - c_{(\delta-\rho+\sigma)}s_{12}^{2} \right) c_{23}s_{23}s_{13} \right] \frac{s_{12}}{c_{12}} \\ &- \zeta_{12}c_{(\rho-\sigma)} \left[s_{(\rho-\sigma)}c_{12}s_{12} \left(s_{23}^{2} - c_{23}^{2}s_{13}^{2} \right) - \left(s_{(\delta+\rho-\sigma)}c_{12}^{2} + s_{(\delta-\rho+\sigma)}s_{12}^{2} \right) c_{23}s_{23}s_{13} \right] \frac{s_{12}}{c_{12}} \\ &+ \left[\frac{s_{\rho}}{\zeta_{13}} \left(c_{(\delta-\rho)}s_{12}s_{23} - c_{\rho}c_{12}c_{23}s_{13} \right) + \zeta_{13}c_{\rho} \left(s_{(\delta-\rho)}s_{12}s_{23} + s_{\rho}c_{12}c_{23}s_{13} \right) \right] \frac{c_{23} \left(c_{12}^{2}c_{13}^{2} - s_{13}^{2} \right)}{c_{12}s_{13}} \\ &- \left[\frac{s_{\sigma}}{\zeta_{23}} \left(c_{(\delta-\sigma)}c_{12}s_{23} + c_{\sigma}c_{23}s_{12}s_{13} \right) + \zeta_{23}c_{\sigma} \left(s_{(\delta-\sigma)}c_{12}s_{23} - s_{\sigma}c_{23}s_{12}s_{13} \right) \right] \frac{c_{23}c_{13}^{2}s_{12}}{s_{13}} \right\}, \end{split}$$

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}t} &= \frac{y_{\tau}^2}{16\pi^2} \Big\{ \frac{s_{(\rho-\sigma)}}{\zeta_{12}} \Big[c_{(\rho-\sigma)} c_{12} s_{12} \left(s_{23}^2 - c_{23}^2 s_{13}^2 \right) - \left(c_{(\delta+\rho-\sigma)} c_{12}^2 - c_{(\delta-\rho+\sigma)} s_{12}^2 \right) c_{23} s_{23} s_{13} \Big] \frac{c_{12}}{s_{12}} \\ &- \zeta_{12} c_{(\rho-\sigma)} \Big[s_{(\rho-\sigma)} c_{12} s_{12} \left(s_{23}^2 - c_{23}^2 s_{13}^2 \right) - \left(s_{(\delta+\rho-\sigma)} c_{12}^2 + s_{(\delta-\rho+\sigma)} s_{12}^2 \right) c_{23} s_{23} s_{13} \Big] \frac{c_{12}}{s_{12}} \\ &- \Big[\frac{s_{\sigma}}{\zeta_{23}} \Big(c_{(\delta-\sigma)} c_{12} s_{23} + c_{\sigma} c_{23} s_{12} s_{13} \Big) + \zeta_{23} c_{\sigma} \Big(s_{(\delta-\sigma)} c_{12} s_{23} - s_{\sigma} c_{23} s_{12} s_{13} \Big) \Big] \frac{c_{23} \Big(c_{13}^2 s_{12}^2 - s_{13}^2 \Big)}{s_{12} s_{13}} \\ &+ \Big[\frac{s_{\rho}}{\zeta_{13}} \Big(c_{(\delta-\rho)} s_{12} s_{23} - c_{\rho} c_{12} c_{23} s_{13} \Big) + \zeta_{13} c_{\rho} \Big(s_{(\delta-\rho)} s_{12} s_{23} + s_{\rho} c_{12} c_{23} s_{13} \Big) \Big] \frac{c_{12} c_{23} c_{13}^2}{s_{13}} \Big\} \end{split}$$

• One-loop RGE of ${\mathcal J}~~(\mbox{depends on }\delta,\rho\mbox{ and }\sigma)$

$$\begin{split} \frac{\mathrm{d}\mathcal{J}}{\mathrm{d}t} &= \frac{y_{\tau}^2}{16\pi^2} \left\{ -\frac{c_{23}c_{13}^2s_{23}s_{13}}{\zeta_{12}} \left[c_{\delta}s_{(\rho-\sigma)} + c_{(\rho-\sigma)}s_{\delta} \left(c_{12}^2 - s_{12}^2 \right) \right] \left[c_{(\delta+\rho-\sigma)}c_{12}^2c_{23}s_{23}s_{13} \right] \right. \\ &\left. - c_{(\delta-\rho+\sigma)}c_{23}s_{12}^2s_{23}s_{13} - c_{(\rho-\sigma)}c_{12}s_{12} \left(s_{23}^2 - c_{23}^2s_{13}^2 \right) \right] \right. \\ &\left. + \zeta_{12}c_{23}c_{13}^2s_{23}s_{13} \left[c_{\delta}c_{(\rho-\sigma)} - s_{\delta}s_{(\rho-\sigma)} \left(c_{12}^2 - s_{12}^2 \right) \right] \left[s_{(\delta+\rho-\sigma)}c_{12}^2c_{23}s_{23}s_{13} + s_{(\delta-\rho+\sigma)}c_{23}s_{12}^2s_{23}s_{13} - s_{(\rho-\sigma)}c_{12}s_{12} \left(s_{23}^2 - c_{23}^2s_{13}^2 \right) \right] \right. \\ &\left. + \frac{c_{23}c_{13}^2s_{12}}{\zeta_{13}} \left(c_{(\delta-\rho)}s_{12}s_{23} - c_{\rho}c_{12}c_{23}s_{13} \right) \left[s_{\rho}c_{12}s_{12}s_{13} \left(c_{23}^2 - s_{23}^2 \right) + s_{(\delta-\rho)}c_{23}s_{12}^2s_{23}s_{13}^2 + \left[c_{\delta}s_{\rho} - c_{\rho}s_{\delta} \left(c_{13}^2 - s_{13}^2 \right) \right] c_{12}^2c_{23}s_{23}} \right] \\ &\left. + \zeta_{13}c_{23}c_{13}^2s_{12} \left(s_{(\delta-\rho)}s_{12}s_{23} + s_{\rho}c_{12}c_{23}s_{13} \right) \left[c_{\rho}c_{12}s_{12}s_{13} \left(c_{23}^2 - s_{23}^2 \right) + c_{(\delta-\rho)}c_{23}s_{12}^2s_{23}s_{13}^2 + \left[c_{\delta}c_{\rho} + s_{\delta}s_{\rho} \left(c_{13}^2 - s_{13}^2 \right) \right] c_{12}^2c_{23}s_{23}} \right] \right] \\ &\left. - \frac{c_{12}c_{23}c_{13}^2}{\zeta_{23}} \left(c_{(\delta-\sigma)}c_{12}s_{23} + c_{\sigma}c_{23}s_{12}s_{13} \right) \left[\left(c_{\delta}s_{\sigma} - c_{\sigma}s_{\delta}c_{13}^2 \right) c_{23}s_{12}^2s_{23}} \right] \right] \right] \\ &\left. + \zeta_{23}c_{12}s_{12}s_{13} \left(c_{23}^2 - s_{23}^2 \right) + \left(s_{(\delta-\sigma)}c_{12}^2 + c_{\sigma}s_{\delta}s_{12}^2 \right) c_{23}s_{23}s_{13}^2} \right] \right] \\ &\left. + \zeta_{23}c_{12}c_{23}c_{13}^2 \left(s_{(\delta-\sigma)}c_{12}s_{23} - s_{\sigma}c_{23}s_{12}s_{13} \right) \left[- \left(c_{\delta}c_{\sigma} + s_{\delta}s_{\sigma}c_{13}^2 \right) c_{23}s_{12}^2 s_{23}} \right] \right\} \\ &\left. + \zeta_{23}c_{12}c_{23}c_{13}^2 \left(s_{(\delta-\sigma)}c_{12}s_{23} - s_{\sigma}c_{23}s_{12}s_{13} \right) \left[- \left(c_{\delta}c_{\sigma} + s_{\delta}s_{\sigma}c_{13}^2 \right) c_{23}s_{12}^2 s_{23}} \right] \right\} \\ &\left. + \zeta_{23}c_{12}c_{23}c_{13}^2 \left(s_{23}^2 - s_{23}^2 \right) + \left(c_{(\delta-\sigma)}c_{12}^2 + s_{\delta}s_{\sigma}s_{12}^2 \right) c_{23}s_{23}s_{13}^2} \right] \right\}$$

Numerical Calculations

How do we do the numerical calculation?

We follow a "running and diagonalizing" procedure: first compute the RGE evolution of lepton mass matrices and then extract their mass eigenvalues and flavor mixing parameters at $\Lambda_{\rm EW}$.

 Present information on neutrino masses and mixing from oscillation data (90% CL):

 $\Delta m_{12}^2 = (7.2 \sim 8.9) \times 10^{-5} eV^2$ central value: $8.0 \times 10^{-5} eV^2$ $\Delta m_{23}^2 = (1.7 \sim 3.3) \times 10^{-3} eV^2$ central value: $2.5 \times 10^{-3} eV^2$

 $30^{\circ} < \theta_{12} < 38^{\circ}, \quad 36^{\circ} < \theta_{23} < 54^{\circ}, \quad \theta_{13} < 10^{\circ}$

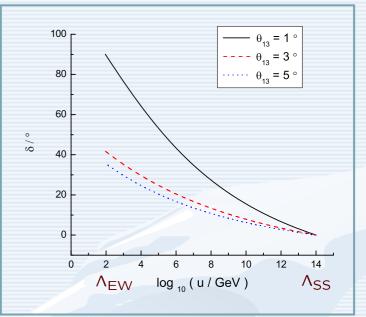
The engenvalues of Y_l and the elements of κ at Λ_{SS} are chosen in such a way that they can correctly run to their low energy values.

Radiative Generation of Phases

- We concentrate on the case that three neutrino masses are nearly degenerate and $\tan\beta = 10$.
- Approximate RGEs of three phases in this case

$$\frac{\mathrm{d}\delta}{\mathrm{d}t} \approx \frac{y_{\tau}^2}{16\pi^2} \left[\frac{c_{(\rho-\sigma)}s_{(\rho-\sigma)}}{\zeta_{12}} s_{23}^2 + \left(\frac{c_{(\delta-\rho)}s_{\rho}}{\zeta_{13}} - \frac{c_{(\delta-\sigma)}s_{\sigma}}{\zeta_{23}} \right) \frac{c_{12}s_{12}c_{23}s_{23}}{s_{13}} \right]$$

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} \approx \frac{y_{\tau}^2}{16\pi^2} \left[\frac{c_{(\rho-\sigma)}s_{(\rho-\sigma)}}{\zeta_{12}} s_{12}^2 s_{23}^2 + \left(\frac{c_{(\delta-\rho)}s_{\rho}}{\zeta_{13}} - \frac{c_{(\delta-\sigma)}s_{\sigma}}{\zeta_{23}} \right) \frac{c_{12}s_{12}c_{23}s_{23}}{s_{13}} \right]$$

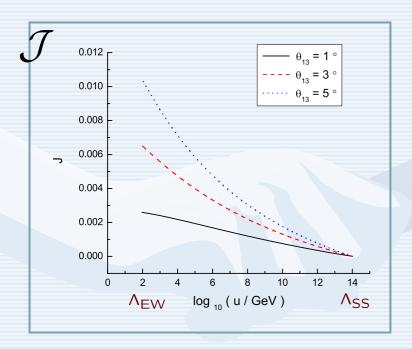

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} \approx \frac{y_{\tau}^2}{16\pi^2} \left[\frac{c_{(\rho-\sigma)}s_{(\rho-\sigma)}}{\zeta_{12}} c_{12}^2 s_{23}^2 + \left(\frac{c_{(\delta-\rho)}s_{\rho}}{\zeta_{13}} - \frac{c_{(\delta-\sigma)}s_{\sigma}}{\zeta_{23}} \right) \frac{c_{12}s_{12}c_{23}s_{23}}{s_{13}} \right]$$

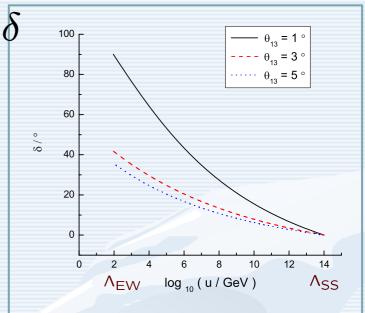
The one-loop RGE running behaviors of three CP-violating phases are quite similar in the chosen parametrization.

• Radiative Generation of δ = 90°

• δ = 90° might imply "Maximal" CP violation in some sense.

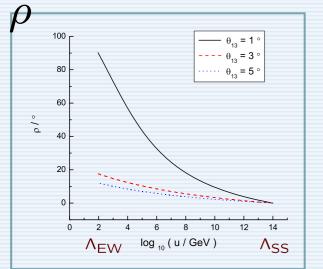
• In the inverted hierarchy case, radiative generation of δ (or ρ , σ) = 90° from 0° is also possible.



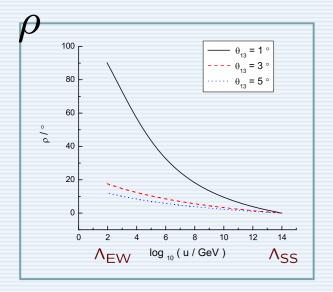

Parameter	Seesaw Scale (Input)	Electroweak Scale (Output)		
		$\theta_{13} = 1^{\circ}$	$\theta_{13} = 3^{\circ}$	$\theta_{13} = 5^{\circ}$
$m_1(eV)$	0.241	0.20	0.20	0.20
$\Delta m_{21}^2 (10^{-5} \text{ eV}^2)$	20.4	7.79	7.17	6.56
$\Delta m_{31}^{2}(10^{-3} \text{ eV}^2)$	3.32	2.20	2.20	2.20
θ_{12}	24.1°	33.0°	33.0°	33.1°
θ_{23}	43.9°	45.1°	45.0°	45.0°
θ_{13}	$1^{\circ}/3^{\circ}/5^{\circ}$	0.65°	2.46°	4.52°
δ	0°	● 90.0°	41.8°	35.8°
ρ	4.0°	72.2°	23.8°	17.6°
σ	-57.5°	26.3°	-22.0°	-28.1°

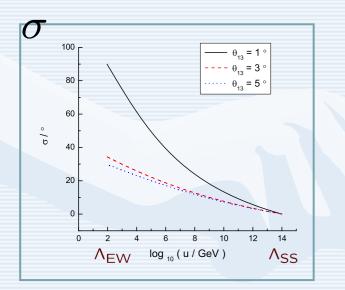
• Radiative Generation of δ = 90°

• δ = 90° might imply "Maximal" CP violation in some sense.


• In the inverted hierarchy case, radiative generation of δ (or ρ , σ) = 90° from 0° is also possible.

- \mathcal{J} is sensitive to both δ and θ_{13} .
- \mathcal{J} does not diverge when $\theta_{13} \rightarrow 0$.
- With a larger value of θ_{13} , δ runs faster but \mathcal{J} slower.


• Radiative Generation of ρ = 90° , σ = 90°



Parameter	Input (Λ_{SS})	Output (A _{EW})		
		$\theta_{13} = 1^{\circ}$	$\theta_{13} = 3^{\circ}$	$\theta_{13} = 5^{\circ}$
$m_1(eV)$	0.241	0.20	0.20	0.20
$\Delta m_{21}^2 (10^{-5} \text{ eV}^2)$	20.4	8.54	7.90	7.27
$\Delta m_{31}^{2^{-1}}(10^{-3} \text{ eV}^2)$	3.32	2.21	2.20	2.20
θ_{12}	27.6°	33.1°	33.2°	33.3°
θ_{23}	43.9°	44.8°	44.8°	44.8°
θ_{13}	$1^{\circ}/3^{\circ}/5^{\circ}$	0.43°	2.17°	4.24°
δ	0°	107.6°	35.4°	30.2°
$\rightarrow \rho$	→ 0° →	90.2°	17.6°	12.1°
σ	-67.7°	34.1°	-38.3°	-44.6°

	ParameterInput (Λ_{SS}) Output (Λ_{EW})				
$\theta_{13} = 3 \circ$			$\theta_{13} = 1^{\circ}$	$\theta_{13} = 3^{\circ}$	$\theta_{13} = 5^{\circ}$
$\theta_{13} = 5^{\circ}$	$m_1(eV)$	0.241	0.20	0.20	0.20
60 -	$\Delta m_{21}^2 (10^{-5} \text{ eV}^2)$	20.3	8.24	8.85	9.50
	$\Delta m_{31}^{2^{-1}}(10^{-3} \text{ eV}^2)$	3.32	2.21	2.21	2.21
40	θ_{12}	24.1°	33.2°	34.2°	35.2°
20-	θ_{23}	43.9°	44.6°	44.6°	44.6°
	θ_{13}	$1^{\circ}/3^{\circ}/5^{\circ}$	0.51°	2.27°	4.29°
	δ	119.7°	216.0°	161.0°	157.1°
$0 2 4 6 8 10 12 14$ $\Lambda_{FW} \log_{10}(u/\text{GeV}) \Lambda_{SS}$	ρ	60.8°	135.3°	78.8°	73.6°
$\Lambda_{EW} \log_{10} (u/GeV) \Lambda_{SS}$	$\rightarrow \sigma$	→ 0°	90.0°	34.4°	29.8°

• Radiative Generation of ρ = 90° , σ = 90°

Remarks:

Simultaneous generation of appreciable

•
$$\delta$$
 and ρ from $\sigma \neq$ 0° ,

is possible;

• δ and σ from $\rho \neq 0^\circ$,

is possible;

- ρ and σ from $\delta \neq$ 0° ,

is suppressed.

Quisi-fixed Point of δ

- $\theta_{13} \rightarrow 0$ may naturally arise from an underlying flavor symmetry, and is allowed by present experimental data. (deserve careful considerations)
- Note that the RGE of δ contains terms of s_{13}^{-1} . —— divergence
- But the derivative of δ can keep finite in the limit $\theta_{13} \rightarrow 0$, if three CPV phases satisfy a novel continuity condition. \longrightarrow quasi-fixed point of δ
- The exact one-loop RGE of δ (included terms of y_{μ} and y_{e}) (PDG) $\frac{d\delta}{dt} = \frac{C(y_{\tau}^2 - y_{\mu}^2)}{32\pi^2} \cdot \frac{m_3 \chi}{\Delta m_{31}^2 \Delta m_{32}^2} \cdot \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{\sin \theta_{13}} + \text{other terms}$ and $\chi = m_3 \Delta m_{21}^2 \sin \delta + m_2 \Delta m_{31}^2 \sin (\delta + \alpha_2) - m_1 \Delta m_{32}^2 \sin (\delta + \alpha_1)$
- $\theta_{13} \rightarrow 0$ and keep d δ /dt finite 1. $m_3 = 0, --\delta$ has no quasi-fixed point and only $(\alpha_1 - \alpha_2)$ is physical. 2. $\chi = 0, --$ continuity condition: $\cot \delta = \frac{m_1 \cos \alpha_1 - (1+\zeta)m_2 \cos \alpha_2 - \zeta m_3}{(1+\zeta)m_2 \sin \alpha_2 - m_1 \sin \alpha_1}$

- 1) Normal hierachy $m_1 \ll m_2 \ll m_3$, and $m_1 = 0$ $m_2 \sin \delta + m_3 \sin (\delta + \alpha_2) \approx 0$
- 2) Inverted hierarchy $m_3 \ll m_1 \lesssim m_2$, and $m_3 \sim 0$ $m_1 \sin (\delta + \alpha_2) \approx m_2 \sin (\delta + \alpha_1)$
- 3) Near degeneracy $(\Delta m_{32}^2 > 0 \text{ or } \Delta m_{32}^2 < 0)$ $\sin (\delta + \alpha_1) \approx \sin (\delta + \alpha_2) \qquad (\alpha_1 \neq \alpha_2)$ $\delta \approx -(\alpha_1 + \alpha_2)/2 + (n+1/2)\pi \qquad (n = 0, \pm 1, \pm 2, \cdots)$ $\sin \delta + \sin (\delta + \alpha_2) \approx 0 \qquad (\alpha_1 = \alpha_2)$ $\delta \approx -\alpha_2/2 + n\pi \qquad (n = 0, \pm 1, \pm 2, \cdots)$

٠

Once the initial value of α_1 and α_2 are fixed, the value of δ at its quasi-fixed point can be determined.

Take Tri-bimaximal Mixing as an Example

Generalized tri-bimaximal neutrino mixing

$$V_0' = \begin{pmatrix} \sqrt{6}/3 & \sqrt{3}/3 & 0\\ -\sqrt{6}/6 & \sqrt{3}/3 & \sqrt{2}/2\\ \sqrt{6}/6 & -\sqrt{3}/3 & \sqrt{2}/2 \end{pmatrix} \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0\\ 0 & e^{i\alpha_2/2} & 0\\ 0 & 0 & 1 \end{pmatrix} \quad \begin{array}{c} \operatorname{at} \Lambda_{\text{55}}, \quad \theta_{12} = 35.26^{\circ}\\ \theta_{23} = 45^{\circ}\\ \theta_{12} = 0^{\circ} \end{pmatrix}$$

• Quasi-fixed point of δ :

$$\hat{\delta} \approx -\frac{1}{2} \left(\hat{\alpha}_1 + \hat{\alpha}_2 \right) + \left(n + \frac{1}{2} \right) \pi , \quad (\hat{\alpha}_1 \neq \hat{\alpha}_2) \quad \text{or} \quad \hat{\delta} \approx -\frac{\hat{\alpha}_1}{2} + n\pi , \quad (\hat{\alpha}_1 \approx \hat{\alpha}_2)$$

	300 -	Parameter	Input at Λ_{SS}	Output at Λ_{EW}
	250 α ₁	$m_1(eV)$	0.241	0.201
	200 -	$\Delta m_{21}^2 (10^{-5} \text{ eV}^2)$	17.0	8.19
$\delta, \alpha_1, \alpha_2 / ^{\circ}$		$\Delta m_{31}^{21}(10^{-3} \text{ eV}^2)$	3.3	2.21
	3^{α} 100 α_2 α_2 α_3 α_2 α_3 α_3 α_4 α_3 α_4 α_5 $\alpha_$	θ_{12}	35.26°	36.38°
		θ_{23}	45.0°	46.22°
	-50 -	θ_{13}	0°	1.367°
	-100 - 8	δ		-77.85°
	$-150\begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 $	α_1	260.0°	245.17°
	0 2 4 6 8 10 12 14 log ₁₀ (μ / GeV)	α2	100.0°	92.27°

Summary

- RGE evolution has appreciable effects on neutrino masses and mixing parameters, especially on three CP-violating phases and especially when three neutrino masses are nearly degenerate.
- Since three CP-violating phases entangled with one another in the one-loop RGE evolution, the radiative generation of one (or two) CP-violating phase(s) from the other is possible, even the maximal value(90°) is achievable in some case.
- The quasi-fixed point in the RGE running of δ is in general unavoidable for those neutrino mixing pattern with $\theta_{13} = 0^{\circ}$, hence it should be taken into account for model building at high scale.

