Re－examining charmless $B \rightarrow P V$ decays in QCD factorization approach

李 新 强

河南师范大学
中科院理论物理研究所
xqli＠itp．ac．cn

Outline

（2）1．Introduction and Motivation
2．Decay amplitudes of $B \rightarrow P V$ at NLO in α_{s}
3．Penguin contractions of spectator－scattering amplitudes
4．Numerical results and Discussions
5．Conclusions

Based on our recent works：Xinqiang Li and Yadong Yang， PRD73，114027（2006），PRD72，074007（2005）．

1 Introduction and Motivations

The study of charmless hadronic B decays are of particular importance in cur－ rent particle physics：
＊to understand the origin of $C P$ violation；
＊to determine the flavor mixing parameters of the quark sector within the SM；
＊to probe possible new physics scenarios beyond the SM．
Experimentally，huge amount of experimental data has been analyzed with ap－ preciative precision：BABAR and Belle experiments．

Introduction and Decay amplitudes at． Penguin contractions． Numerical results and Conclusions tries，．．．．

At the present stage，some puzzles in rare hadronic B decays still exist：
－the large measured branching ratio of $B^{0} \rightarrow \pi^{0} \pi^{0}$ ．
－the observed unmatched $C P$ asymmetries： $\mid A_{\mathrm{CP}}\left(B^{0} \rightarrow \pi^{ \pm} K^{\mp} \mid \gg\right.$ $\mid A_{\mathrm{CP}}\left(B^{ \pm} \rightarrow \pi^{0} K^{ \pm} \mid\right.$.
－the abnormally large measured branching ratios of $B \rightarrow \eta^{\prime} K$ and $B \rightarrow \eta K^{*}$ decays；
－the large transverse polarization fractions in $B \rightarrow \phi K^{*}$ decays；
－．．．
Except the first one，all these other decay modes are dominated by the FCNC $b \rightarrow s$ transitions，which are sensitive to NP effects．Confronted with these anomalies，theorists are forced not only to consider more precise QCD effects， but also to speculate on possible NP effects．

Here，we consider contributions of the higher order penguin contractions of spectator－scattering amplitudes induced by the $b \rightarrow s(d) g^{*} g^{*}$ transitions．
\star Contributions of the $b \rightarrow s g g$ process to the inclusive and semi－inclusive B decays could be large compared to $b \rightarrow s g$ process：W．S．Hou，NPB308， 561 （1988）；H．Simma and D．Wyler，NPB（1990）；C．Greub and P．Liniger， PRD63， 054025 （2001）；G．Eilam and Y．D．Yang，PRD66， 074010 （2002）．；
\star These higher order penguin contraction contributions are not negligible in exclusive hadronic B decays，especially in penguin－dominated decay modes：Xinqiang Li and Yadong Yang，PRD72，074007（2005）；
\star A lot of new Quasi two－body $B \rightarrow P V$ decays have been measured experi－ mentally．

To further investigate their impacts on exclusive hadronic B decays，we consider

Because of their similar flavor structures，$B \rightarrow P V$ decays are closely related to their $P P$ counterparts．However，these modes have apparent advantages in some cases：
\star due to the less penguin pollution，$B \rightarrow \pi \rho$ decay modes are more suitable than $B \rightarrow \pi \pi$ ones for extracting the weak angle α of the CKM UT．
＊the penguin contributions in $P V$ decay modes are generally smaller than in their $P P$ counterparts，thus studies of the penguin－dominated $P V$ decay modes may be helpful to discuss sub－leading amplitude contributions，such as the annihilation contributions．

2 Decay amplitudes at NLO in α_{s}

Using the OPE and the RGE，the low energy effective for charmless B decays are

$$
\begin{align*}
\mathcal{H}_{\mathrm{eff}}= & \frac{G_{F}}{\sqrt{2}}\left[V_{u b} V_{u q}^{*}\left(C_{1} O_{1}^{u}+C_{2} O_{2}^{u}\right)+V_{c b} V_{c q}^{*}\left(C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right)\right. \\
& \left.-V_{t b} V_{t q}^{*}\left(\sum_{i=3}^{10} C_{i} O_{i}+C_{7 \gamma} O_{7 \gamma}+C_{8 g} O_{8 g}\right)\right]+ \text { h.c. } \tag{1}
\end{align*}
$$

where the Wilson coefficients $C_{i}(\mu)$ represent all the physics contributions higher than the scale $\mu \sim \mathcal{O}\left(m_{b}\right)$ ．The effective operators Q_{i} govern a given decay process，including current－current operators，QCD（EW）－penguin opera－ tors，and dipole operators．

With the effective Hamiltonian Eq．（1），the decay amplitude for a general $B \rightarrow$ $P V$ decay can be written as

$$
\begin{equation*}
\langle P V| \mathcal{H}_{\mathrm{eff}}|B\rangle=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} \lambda_{p}^{(\prime)} C_{i}\langle P V| Q_{i}^{p}|B\rangle \tag{2}
\end{equation*}
$$

With the QCDF approach，the hadronic matrix elements can be factorized

$$
\begin{align*}
\langle P V| Q_{i}^{p}|B\rangle= & F_{+}^{B \rightarrow P} T_{V, i}^{\mathrm{I}} * f_{V} \Phi_{V}+A_{0}^{B \rightarrow V} T_{P, i}^{\mathrm{I}} * f_{P} \Phi_{P} \\
& +T_{i}^{\mathrm{II}} * f_{B} \Phi_{B} * f_{P} \Phi_{P} * f_{V} \Phi_{V} \tag{3}
\end{align*}
$$

where Φ_{M} are the meson LCDAs，$F_{+}^{B \rightarrow P}$ and $A_{0}^{B \rightarrow V}$ are $B \rightarrow P$ and $B \rightarrow V$
transition form factors．The kernels $T_{i}^{\mathrm{I}, \mathrm{II}}$ are dominated by hard gluon ex－ changes，and hence calculable perturbatively．The relevant Feynman diagrams

Introduction and
Decay amplitudes at． Penguin contractions． Numerical results and Conclusions

标题页
4

Introduction and
Decay amplitudes at． Penguin contractions．．

Numerical results and Conclusions

访问主页
标 题 页

第 9 页共 43 页返 回

Order α_{s} corrections to the hard－scattering kernels $T_{M, i}^{\mathrm{I}}$（coming from the diagrams（a）－（f））and T_{i}^{II}（coming from the last two diagrams）．

After direct calculations，the decay amplitude for a general $B \rightarrow P V$ decay can then be rewritten as

$$
\begin{equation*}
\mathcal{A}(B \rightarrow P V)=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} \sum_{i=1}^{10} \lambda_{p}^{(\prime)} a_{i}^{p}\langle P V| Q_{i}|B\rangle_{F} \tag{4}
\end{equation*}
$$

All the＂nonfactorizable＂effects are encoded in the coefficients a_{i}^{p} ：

$$
\begin{align*}
a_{i}^{p}\left(M_{1} M_{2}\right)= & \left(C_{i}+\frac{C_{i \pm 1}}{N_{c}}\right) N_{i}\left(M_{2}\right) \\
& +\frac{C_{i \pm 1}}{N_{c}} \frac{C_{F} \alpha_{s}}{4 \pi}\left[V_{i}\left(M_{2}\right)+\frac{4 \pi^{2}}{N_{c}} H_{i}\left(M_{1} M_{2}\right)\right]+P_{i}^{p}\left(M_{2}\right) . \tag{5}
\end{align*}
$$

The quantities $V_{i}\left(M_{2}\right)$ account for one－loop vertex corrections，$H_{i}\left(M_{1} M_{2}\right)$ for

Introduction and Decay amplitudes at． Penguin contractions． Numerical results and． Conclusions

The coefficients $a_{i}^{p}(i=3, \ldots, 10)$ always appear in pairs．So，one can define the following quantities α_{i}^{p} in terms of a_{i}^{p} ：

$$
\begin{align*}
\alpha_{1}\left(M_{1} M_{2}\right) & =a_{1}\left(M_{1} M_{2}\right), \quad \alpha_{2}\left(M_{1} M_{2}\right)=a_{2}\left(M_{1} M_{2}\right), \\
\alpha_{3}^{p}\left(M_{1} M_{2}\right) & = \begin{cases}a_{3}^{p}\left(M_{1} M_{2}\right)-a_{5}^{p}\left(M_{1} M_{2}\right) ; & \text { if } M_{1} M_{2}=V P, \\
a_{3}^{p}\left(M_{1} M_{2}\right)+a_{5}^{p}\left(M_{1} M_{2}\right) ; & \text { if } M_{1} M_{2}=P V,\end{cases} \\
\alpha_{4}^{p}\left(M_{1} M_{2}\right) & = \begin{cases}a_{4}^{p}\left(M_{1} M_{2}\right)+r_{\chi}^{M_{2}} a_{6}^{p}\left(M_{1} M_{2}\right) ; & \text { if } M_{1} M_{2}=P V, \\
a_{4}^{p}\left(M_{1} M_{2}\right)-r_{\chi}^{M_{2}} a_{6}^{p}\left(M_{1} M_{2}\right) ; & \text { if } M_{1} M_{2}=V P,\end{cases} \tag{6}\\
\alpha_{3, \text { ew }}^{p}\left(M_{1} M_{2}\right) & = \begin{cases}a_{9}^{p}\left(M_{1} M_{2}\right)-a_{7}^{p}\left(M_{1} M_{2}\right) ; & \text { if } M_{1} M_{2}=V P, \\
a_{9}^{p}\left(M_{1} M_{2}\right)+a_{7}^{p}\left(M_{1} M_{2}\right) ; & \text { if } M_{1} M_{2}=P V,\end{cases} \\
\alpha_{4, \text { ew }}^{p}\left(M_{1} M_{2}\right) & = \begin{cases}a_{10}^{p}\left(M_{1} M_{2}\right)+r_{\chi}^{M_{2}} a_{8}^{p}\left(M_{1} M_{2}\right) ; & \text { if } M_{1} M_{2}=P V, \\
a_{10}^{p}\left(M_{1} M_{2}\right)-r_{\chi}^{M_{2}} a_{8}^{p}\left(M_{1} M_{2}\right) ; & \text { if } M_{1} M_{2}=V P,\end{cases}
\end{align*}
$$

It should be noted that for different final states，the vector and the scalar penguin amplitudes have different interference effects．

The annihilation contributions are power suppressed compared to the leading order terms，and hence do not appear in Eq．（3）．Nevertheless，these contribu－ tions may be numerically important for realistic B－meson decays．So，we also take into account their contributions．

$$
\begin{equation*}
\mathcal{A}^{a n n}(B \rightarrow P V) \propto \frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} \sum_{i} \lambda_{p}^{(\prime)} f_{B} f_{M_{1}} f_{M_{2}} b_{i}\left(M_{1} M_{2}\right), \tag{7}
\end{equation*}
$$

At order $\mathcal{O}\left(\alpha_{s}\right)$ ，the annihilation kernels $b_{i}\left(M_{1} M_{2}\right)$ arise from the following four diagrams：

Introduction and Decay amplitudes at． Penguin contractions． Numerical results and Conclusions

Comments on the NLO results within the QCDF framework：
－All＂nonfactorizable＂power－suppressed contributions，except for the hard－
spectator interactions and annihilation terms，have been neglected．
－In calculating the hard－spectator and weak annihilation terms，consider－ $\mu_{h} \sim \sqrt{\Lambda_{\mathrm{QCD}} m_{b}}$ ，rather than at the scale $\mu \sim m_{b}$ ．
－However，the evolution of $C_{i}(\mu)$ down to μ_{h} is nontrivial，since the RGE will change below the scale m_{b} ．Here，we do not consider the charm and bottom threshold and evolve the Wilson coefficients in a 5－flavored theory．With this approximation，all logs of the form $\log \left(\mu / M_{W}\right)$ have been resumed， while logs of the form $\log \left(\mu / m_{b}\right)$ and $\log \left(\mu / m_{c}\right)$ are not．Since the latter two terms are never large with $\mu \geq m_{b} / 2$ ，the approximation would work．

标题页

3 Penguin contractions of spectator－

 scattering amplitudes induced by he $b \rightarrow s(d) g^{*} g^{*}$ transitionsFor exclusive hadronic B decays，at the quark level，the $b \rightarrow s(d) g^{*} g^{*}$ transitions can occur in many different manners．The relevant Feynman diagrams include

Introduction and
Decay amplitudes at Penguin contractions． Numerical results and Conclusions

Introduction and
Decay amplitudes at．
Penguin contractions．
Numerical results and
Conclusions

访问主页

标 题 页

第 16 页共 43 页

返 回

Introduction and
Decay amplitudes at． Penguin contractions． Numerical results and． Conclusions

访问主页
标题页

第17页共43页

Penguin operator Q_{i} contraction contributions induced by the $b \rightarrow D g^{*} g^{*}$ tran－ sitions．

Comments on these higher order penguin contraction contributions：
－Among all the penguin contractions of spectator－scattering amplitudes of order α_{s}^{2} ，these Feynman diagrams induced by $b \rightarrow s(d) g^{*} g^{*}$ transitions should be the dominant resources，since they are not genuine two－loop QCD diagrams，and hence there are no additional $\frac{1}{16 \pi^{2}}$ suppression factor in their contributions compared to the genuine two－loop ones of order α_{s}^{2} ．
－Studying these higher order penguin contraction contributions could be very helpful for our understandings of the dynamical mechanism of hadronic B decays，the higher order perturbative corrections to the rare hadronic B de－ cays within the QCDF formalism．
－In addition，studying these higher order penguin contraction contributions may help us to further constrain possible NP parameter spaces．

Introduction and Decay amplitudes at． Penguin contractions． Numerical results and Conclusions

访问主页
标题页
44
$4>$
第 18 页共 43 页
返 回
全屏显示

关 闭
退 出
－In evaluating these higher order Feynman diagrams，we have adopted the naive dimensional regularization（NDR）scheme and the modified minimal
subtraction（ $\overline{\mathrm{MS}}$ ）scheme．
－In addition，we have adopted the Feynman gauge for the gluon propaga－ tor．In principle，the gauge invariance will be guaranteed when the full set of Feynman diagrams are summed with the external quarks being on－ mass－shell．However，we must be careful of the gauge dependence in our calculation，since only a subset $\mathcal{O}\left(\alpha_{s}^{2}\right)$ Feynman diagrams are calculated．
－After careful checking，we find that each Feynman diagram of our concerns is gauge independent，using the on－shell condition of the external quarks and the gauge invariance of specific Dirac structures of the dipole operator $Q_{8 g}$ and the building blocks．

标 题 页

After lengthy and careful calculations，the total contributions of the higher or－ der penguin contractions of spectator－scattering amplitudes induced by $b \rightarrow$ $s(d) g^{*} g^{*}$ transitions can be written as

$$
\begin{align*}
\mathcal{A}^{\prime}(B \rightarrow P V)=\frac{G_{F}}{\sqrt{2}}[& \sum_{p=u, c} C_{1} \mathcal{A}_{Q_{1}}+\left(C_{3}-\frac{1}{2} C_{9}\right) \mathcal{A}_{Q_{3}}+C_{4} \mathcal{A}_{Q_{4}}+C_{6} \mathcal{A}_{Q_{6}} \\
& \left.+C_{8} \mathcal{A}_{Q_{8}}+C_{10} \mathcal{A}_{Q_{10}}+C_{8 g}^{\mathrm{eff}} \mathcal{A}_{Q_{89}}\right] \tag{8}
\end{align*}
$$

The total decay amplitude for a given $B \rightarrow P V$ decay is then given as

$$
\begin{equation*}
\langle P V| \mathcal{H}_{\mathrm{eff}}|B\rangle=\mathcal{A}(B \rightarrow P V)+\mathcal{A}^{a n n}(B \rightarrow P V)+\mathcal{A}^{\prime}(B \rightarrow P V) . \tag{9}
\end{equation*}
$$

4 Numerical results and Discussions

Introduction and．
Decay amplitudes at．
Penguin contractions．
Numerical results and
Conclusions

第 21 页共 43 页

返 回

全屏显示

4．1．Numerical analysis of penguin contraction contributions

We first discuss the relative strength of each Feynman diagram of our concerns．
－Numerical results of each Feynman diagram corresponding to the chromo－ magnetic dipole operator $Q_{8 g}$ contraction．

	Decay mode	$\Phi_{M_{2}} \Phi_{M_{1}}$	$\Phi_{M_{2}} \Phi_{m_{1}}$	$\Phi_{m_{2}} \Phi_{M_{1}}$	$\Phi_{m_{2}} \Phi_{m_{1}}$
Fig．（a）	$B \rightarrow P V$	-67.50	-125.76	-9.64	-18.94
	$B \rightarrow V P$	-67.50	4.82	34.71	-3.79
Figs．（b＋c）	$B \rightarrow P V$	-1.50	-3.54	-1.07	-0.42
	$B \rightarrow V P$	-1.50	-1.61	1.86	0.42

Introduction and Decay amplitudes at． Penguin contractions． Numerical results and Conclusions

第22页共 43 页

返 回

全屏显示

关 闭

The main contributions come from Fig．（a），and the other ones play only a minor
－Numerical results of each Feynman diagram corresponding to the four－quark operator Q_{1}^{c} contraction．Terms involving the twist－three LCDAs are given in unit of the factor r_{χ}^{M} ．

	modes	$\Phi_{M_{2}} \Phi_{M_{1}}$	$\Phi_{M_{2}} \Phi_{m_{1}}$	$\Phi_{m_{2}} \Phi_{M_{1}}$	$\Phi_{m_{2}} \Phi_{m_{1}}$
Fig．（a）	PV	$-1.39-12.65 i$	$0.17-14.10 i$	$-0.15+15.38 i$	$0.12+13.51 i$
	VP	$-1.39-12.65 i$	$-0.02+1.28 i$	$-0.12+11.11 i$	$-0.01-0.44 i$
Figs．（b＋c）	PV	$-0.01-1.05 i$	$-0.12-1.21 i$	$-0.62+0.81 i$	$-0.18-0.11 i$
	VP	$-0.01-1.05 i$	$-0.39-1.25 i$	$-0.08+0.78 i$	$-0.10-0.19 i$
Figs．（d＋e）	PV	$-9.03+14.94 i$	$19.19+28.30 i$	$4.32-21.29 i$	$10.82-15.69 i$
	VP	$-9.03+14.94 i$	$14.26+9.04 i$	$0.83-16.78 i$	$-0.39-3.46 i$

Introduction and Decay amplitudes at Penguin contractions． Numerical results and Conclusions

From the above numerical results，we have the following observations：
－Contributions of Figs．（b）and（c）are generally much smaller than those of the other three ones，and the main contributions come from the diagrams Figs．（d）and（e）．
－Although each term labeled by the meson LCDAs in each Feynman diagram has a large imaginary part，and hence a large strong phase，the total strong phase of each Feynman diagram is small due to cancelations among the four terms．
－For each term labeled by the same meson LCDAs，there also exist cancela－

第 24 页共 43 页

返 回

4．2．Branching ratios of $B \rightarrow P V$ decays

－$C P$－averaged branching ratios（in units of 10^{-6} ）of tree－dominated $B \rightarrow$ $P V$ decays with $\Delta S=0$ ．

Decay mode	NF	$\overline{\mathcal{B}}^{f}$		EXP．		
		$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	$\mathcal{O}\left(\alpha_{s}\right)$	$\overline{\mathcal{B}}^{f+a}$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$

Introduction and

Decay amplitudes at ． Penguin contractions． Numerical results and Conclusions

访问主页

标 题 页

第 25 页共 43 页

返 回

全屏显示

关 闭

For these decay modes，we have the following general remarks：
－The decays $\bar{B}^{0} \rightarrow \pi^{ \pm} \rho^{\mp}$ and $B^{-} \rightarrow \pi^{0} \rho^{-}, \pi^{-} \rho^{0}, \pi^{-} \omega$ ．Our results are
generally consistent with the experimental data within errors．Since these decay channels are dominated by the color－allowed tree amplitudes，both the weak annihilation and the higher order penguin contraction contributions are small．In addition，the main theoretical uncertanities come from the form factors and CKM matrix elements．
－The decays $\bar{B}^{0} \rightarrow \pi^{0} \rho^{0}$ and $\bar{B}^{0} \rightarrow \pi^{0} \omega$ ．Since these decay channels are dominated by the color－suppressed tree amplitudes，their branching ratios are predicted to be very small．The weak annihilation contributions are quite large，while the higher order penguin contraction contributions are small． Besides the form factors and CKM matrix elements，the spectator－scattering amplitudes also cause sizable uncertainties．
－$C P$－averaged branching ratios（in units of 10^{-6} ）of penguin－dominated（the upper six）and annihilation－dominated（the last two）$B \rightarrow P V$ decays with
$\Delta S=0$.

Decay mode	NF	$\overline{\mathcal{B}}^{\text {f }}$		$\overline{\mathcal{B}}^{\text {f＋a }}$		
		$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	
$B^{-} \rightarrow K^{-} K^{* 0}$	$0.155_{-0.04}^{+0.07}$	$0.188_{-0.07}^{+0.08}$	$0.28_{-0.09}^{+0.14}$	$0.23_{-0.09}^{+0.11}$	$0.34_{-0.11}^{+0.16}$	<5.3
	$0.32_{-0.11}^{+0.13}$	$0.23_{-0.08}^{+0.10}$	$0.33_{-0.10}^{+0.15}$	$0.29_{-0.10}^{+0.14}$	$0.400_{-0.13}^{+0.20}$	
$\bar{B}^{0} \rightarrow \bar{K}^{0} K^{* 0}$	$0.14_{-0.04}^{+0.06}$	$0.16_{-0.06}^{+0.09}$	$0.26_{-0.08}^{+0.12}$	$0.20_{-0.07}^{+0.10}$	$0.31_{-0.10}^{+0.15}$	．．．
	$0.29_{-0.09}^{+0.14}$	$0.22_{-0.08}^{+0.10}$	$0.31_{-0.10}^{+0.15}$	$0.26_{-0.09}^{+0.10}$	$0.36_{-0.11}^{+0.16}$	
$B^{-} \rightarrow K^{0} K^{*-}$	$0.06_{-0.04}^{+0.13}$	$0.10_{-0.07}^{+0.21}$	$0.10_{-0.07}^{+0.20}$	$0.18{ }_{-0.10}^{+0.27}$	$0.18_{-0.10}^{+0.26}$	．．
	$0.05_{-0.04}^{+0.14}$	$0.08_{-0.06}^{+0.18}$	$0.07_{-0.05}^{+0.17}$	$0.15{ }_{-0.09}^{+0.25}$	$0.14_{-0.08}^{+0.23}$	
$\bar{B}^{0} \rightarrow K^{0} \bar{K}^{* 0}$	$0.06_{-0.04}^{+0.12}$	$0.09_{-0.06}^{+0.19}$	$0.09_{-0.06}^{+0.18}$	$0.18_{-0.10}^{+0.26}$	$0.17_{-0.09}^{+0.27}$	．．．
	$0.04_{-0.03}^{+0.14}$	$0.07_{-0.05}^{+0.16}$	$0.06_{-0.04}^{+0.015}$	$0.15_{-0.08}^{+0.025}$	$0.14_{-0.08}^{+0.024}$	
$B^{-} \rightarrow \pi^{-} \phi$	≈ 0.001	≈ 0.008	，	．．．	．．．	<0.41
	≈ 0.001	≈ 0.007	\ldots	．．．	．．．	
$\bar{B}^{0} \rightarrow \pi^{0} \phi$	≈ 0.0003	≈ 0.004	．．．	．．．	．．．	<1.0
	≈ 0.0003	≈ 0.003		\ldots	\ldots	
$\bar{B}^{0} \rightarrow K^{*-} K^{+}$	．．．	．．．	．．．	$0.018_{-0.004}^{+0.004}$	．．．	．．．
	．．．	．．．	．．．	$0.019_{-0.004}^{+0.005}$	．．．	．．．
$\bar{B}^{0} \rightarrow K^{-} K^{*+}$	．．．	．．．	．．．	$0.018_{-0.004}^{+0.004}$	．．．	
				$0.019_{-0.004}^{+0.005}$	．．．	

Introduction and
Decay amplitudes at． Penguin contractions． Numerical results and Conclusions

访问主页
标 题 页

第 27 页共 43 页
返 回

全屏显示

For these decay modes，we have the following general remarks：
－The decays $B^{-} \rightarrow K^{-} K^{* 0}$ and $\bar{B}^{0} \rightarrow \bar{K}^{0} K^{* 0}$ ．These decay channels are dominated by the $b \rightarrow d$ penguin amplitudes，and the dominant term is pro－ portional to the coefficient $\alpha_{4}^{p}(P V)$ ．Large interference effects between the two terms are expected and the branching ratios have a strong dependence on the angle γ ．The higher order penguin contraction contributions can pro－ vide about 60% enhancements．The main theoretical errors originate from the quantity λ_{B} ．
－The decays $B^{-} \rightarrow K^{0} K^{*-}$ and $\bar{B}^{0} \rightarrow K^{0} \bar{K}^{* 0}$ ．The dominant contribu－ tion is from the coefficient $\alpha_{4}^{p}(V P)$ ，where delicate cancelations between

标题页

第 28 页共 43 页
返 回
全屏显示

关 闭
退 出 The theoretical errors are mainly due to the strange－quark mass and λ_{B} ．
－The decays $B^{-} \rightarrow \pi^{-} \phi$ and $\bar{B}^{0} \rightarrow \pi^{0} \phi$ ．These two decay channels are electro－weak penguin dominated processes．Large＂nonfactorizable＂con－ tributions dominate these decays，while the theoretical predictions are still quite lower than the experimental upper bounds．The higher order penguin contraction contributions have negligible impact on these decay channels．
－The decays $\bar{B}^{0} \rightarrow K^{+} K^{*-}, K^{-} K^{*+}$ ．These two decay channels are pure annihilation processes．The higher order penguin contraction contributions have no impacts on these decay channels．Studying on these decay modes
－$C P$－averaged branching ratios（in units of 10^{-6} ）of penguin－dominated $B \rightarrow P V$ decays with $\Delta S=1$.

Decay mode	NF	$\overline{\mathcal{B}}^{\text {f }}$		$\overline{\mathcal{B}}^{\text {f＋a }}$		EXP．
		$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	
$B^{-} \rightarrow \pi^{-} \bar{K}^{* 0}$	$2.37_{-0.64}^{+0.72}$	$2.600_{-0.88}^{+0.95}$	$4.26_{-1.21}^{+1.72}$	$3.50_{-1.04}^{+1.22}$	$5.39_{-1.44}^{+2.01}$	10.8 ± 0.8
	$4.89_{-1.28}^{+1.46}$	$3.35_{-1.13}^{+1.27}$	$5.01_{-1.41}^{+1.81}$	$4.45{ }_{-1.36}^{+1.51}$	$6.34_{-1.70}^{+2.18}$	
$B^{-} \rightarrow \pi^{0} K^{*-}$	$1.82_{-0.54}^{+0.76}$	$1.88_{-0.56}^{+0.79}$	$2.73_{-0.81}^{+1.23}$	$2.33_{-0.69}^{+0.96}$	$3.29_{-0.89}^{+1.31}$	6.9 ± 2.3
	$3.03_{-0.88}^{+1.15}$	$2.21_{-0.74}^{+0.87}$	$3.05_{-0.89}^{+1.25}$	$2.755_{-0.79}^{+1.08}$	$3.70_{-1.01}^{+1.36}$	
$\bar{B}^{0} \rightarrow \pi^{+} K^{*-}$	$1.84{ }_{-0.67}^{+0.90}$	$1.92_{-0.72}^{+0.89}$	$3.04{ }_{-1.04}^{+1.64}$	$2.47_{-0.82}^{+1.08}$	$3.78{ }_{-1.34}^{+1.84}$	$11.7_{-1.4}^{+1.5}$
	$3.40{ }_{-1.11}^{+1.49}$	$2.32_{-0.84}^{+1.12}$	$3.43_{-1.13}^{+1.67}$	$2.99_{-0.96}^{+1.31}$	$4.30_{-1.44}^{+2.09}$	
$\bar{B}^{0} \rightarrow \pi^{0} \bar{K}^{* 0}$	$0.49_{-0.20}^{+0.27}$	$0.53_{-0.26}^{+0.35}$	$1.08_{-0.46}^{+0.77}$	$0.80_{-0.33}^{+0.42}$	$1.45_{-0.56}^{+0.86}$	1.7 ± 0.8
	$1.24{ }_{-0.46}^{+0.56}$	$0.73_{-0.35}^{+0.50}$	$1.28_{-0.50}^{+0.73}$	$1.07_{-0.43}^{+0.56}$	$1.72_{-0.65}^{+0.91}$	
$B^{-} \rightarrow K^{-} \phi$	$3.71_{-1.00}^{+1.18}$	$2.73_{-1.20}^{+1.33}$	$5.06{ }_{-1.48}^{+2.01}$	$4.04_{-1.48}^{+1.58}$	$6.77_{-1.74}^{+2.78}$	$9.03_{-0.63}^{+0.65}$
	$10.17_{-3.23}^{+3.21}$	$3.90_{-1.69}^{+1.93}$	$6.32_{-1.77}^{+2.07}$	$5.59_{-2.11}^{+2.23}$	$8.42_{-2.22}^{+2.67}$	
$\bar{B}^{0} \rightarrow \bar{K}^{0} \phi$	$3.45{ }_{-0.93}^{+1.10}$	$2.53_{-1.11}^{+1.20}$	$4.70_{-1.37}^{+1.86}$	$3.67{ }_{-1.37}^{+1.50}$	$6.19_{-1.69}^{+2.40}$	$8.3_{-1.0}^{+1.2}$
	$9.46_{-2.59}^{+3.01}$	$3.63_{-1.61}^{+1.81}$	$5.88{ }_{-1.67}^{+2.10}$	$5.09_{-1.87}^{+2.10}$	$7.70_{-2.14}^{+2.55}$	

Introduction and

Decay amplitudes at Penguin contractions． Numerical results and Conclusions

访问主页
标题页

第 30 页共 43 页

全屏显示
－$C P$－averaged branching ratios（in units of 10^{-6} ）of penguin－dominated $B \rightarrow P V$ decays with $\Delta S=1$ ．（continued）

Decay mode	NF	$\overline{\mathcal{B}}^{f}$		$\overline{\mathcal{B}}^{f+a}$		EXP．
		$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	
$B^{-} \rightarrow \bar{K}^{0} \rho^{-}$	$1.05_{-0.73}^{+2.12}$	$1.74_{-1.16}^{+3.0}$	$1.65_{-1.08}^{+3.10}$	$3.18_{-1.85}^{+4.42}$	$3.05_{-1.73}^{+3.94}$	<48
	$0.76_{-0.63}^{+2.17}$	$1.36_{-0.97}^{+2.99}$	$1.20_{-0.86}^{+2.69}$	$2.73_{-1.58}^{+3.77}$	$2.49_{-1.47}^{+3.83}$	
$B^{-} \rightarrow K^{-} \rho^{0}$	$0.77_{-0.35}^{+1.06}$	$0.99_{-0.59}^{+1.70}$	$0.96_{-0.56}^{+1.69}$	$1.56_{-0.95}^{+2.38}$	$1.51_{-0.95}^{+2.24}$	$4.23_{-0.57}^{+0.56}$
	$0.58_{-0.26}^{+1.11}$	$0.78_{-0.43}^{+1.56}$	$0.72_{-0.36}^{+1.35}$	$1.28_{-0.78}^{+2.10}$	$1.19_{-0.70}^{+2.12}$	
$\bar{B}^{0} \rightarrow K^{-} \rho^{+}$	$2.50_{-1.36}^{+3.17}$	$3.44_{-1.91}^{+4.20}$	$3.31_{-1.81}^{+4.09}$	$5.27_{-2.67}^{+5.29}$	$5.11_{-2.55}^{+5.18}$	$9.9_{-1.5}^{+1.6}$
	$2.28_{-1.33}^{+3.33}$	$3.04_{-1.69}^{+3.66}$	$2.81_{-1.54}^{+3.77}$	$4.86_{-2.42}^{+5.19}$	$4.55_{-2.32}^{+5.00}$	
$\bar{B}^{0} \rightarrow \bar{K}^{0} \rho^{0}$	$1.42_{-0.72}^{+1.59}$	$1.98_{-1.03}^{+2.13}$	$1.90_{-0.97}^{+2.12}$	$3.03_{-1.35}^{+3.01}$	$2.94_{-1.39}^{+2.68}$	5.1 ± 1.6
	$1.32_{-0.76}^{+1.79}$	$1.80_{-0.94}^{+2.17}$	$1.66_{-0.95}^{+1.97}$	$2.88_{-1.35}^{+2.61}$	$2.70_{-1.27}^{+2.59}$	
$B^{-} \rightarrow K^{-} \omega$	$0.89_{-0.48}^{+1.18}$	$2.16_{-1.12}^{+2.33}$	$2.10_{-1.11}^{+2.55}$	$3.07_{-1.49}^{+3.01}$	$2.99_{-1.44}^{+3.07}$	6.5 ± 0.6
$\bar{B}^{0} \rightarrow \bar{K}^{0} \omega$	$0.40_{-0.13}^{+0.87}$	$1.75_{-0.97}^{+2.15}$	$1.65_{-0.94}^{+2.27}$	$2.61_{-1.42}^{+3.20}$	$2.47_{-1.29}^{+3.25}$	
	$0.17_{-0.15}^{+0.66}$	$1.03_{-0.68}^{+1.74}$	$0.99_{-0.66}^{+1.67}$	$1.78_{-1.00}^{+2.45}$	$1.72_{-0.96}^{+2.26}$	4.7 ± 0.6

Introduction and
Decay amplitudes at． Penguin contractions． Numerical results and Conclusions

访问主页
标题页

第 31 页共 43 页

For these decay modes，we have the following general remarks：
－The decays $B \rightarrow \pi K^{*}$ and $B \rightarrow \phi K$ ．Our central results are still lower than the experimental data．The dominant contribution is the coefficient $\alpha_{4}^{p}(P V)$ ． The higher order penguin contraction contributions can give enhancements by about $40 \% \sim 90 \%$ ．Large interference effects between the tree and pen－ guin amplitudes in $\bar{B}^{0} \rightarrow \pi^{+} K^{*-}$ and $B^{-} \rightarrow \pi^{0} K^{*-}$ ，are expected，thus possible to gain information on the angle γ ．The main theoretical errors are due to the CKM elements，form factors，and λ_{B} ．
－The decays $B \rightarrow K \rho$ and $B \rightarrow K \omega$ ．The dominant term is the coefficient $\alpha_{4}^{p}(V P)$ ．Because of the destructive interference between the vector and

第 32 页共 43 页
返 回
全屏显示

关 闭
退 出 main theoretical errors are from the strange－quark mass and form factors．

Introduction and
Decay amplitudes at．
Penguin contractions． Numerical results and Conclusions the scalar penguin contributions，these branching ratios are much smaller than their $B \rightarrow P P$ counterparts．The higher order penguin contraction contributions are quite small，and tend to decrease the NLO results．The

4．3．Direct $C P$－violating asymmetries of $B \rightarrow P V$ decays

－Direct $C P$－violating asymmetries（in units of 10^{-2} ）for tree－dominated $B \rightarrow$

Introduction and
Decay amplitudes at Penguin contractions． Numerical results and Conclusions

第 33 页共 43 页

返 回

全屏显示
－Direct $C P$－violating asymmetries（in units of 10^{-2} ）for penguin－dominated

Introduction and

Decay mode	$\mathcal{A}_{C P}^{f}$		$\mathcal{A}_{C P}^{f+a}$		EXP．
	$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	
$B^{-} \rightarrow K^{-} K^{* 0}$	$-36.28_{-5.51}^{+5.04}$	$-19.29_{-6.15}^{+8.89}$	$-31.08_{-4.67}^{+4.37}$	$-15.34_{-6.47}^{+8.74}$	\ldots
	$-42.06_{-6.38}^{+5.68}$	$-28.33_{-5.54}^{+6.84}$	$-36.92_{-5.20}^{+5.40}$	$-24.27_{-5.82}^{+6.78}$	
$\bar{B}^{0} \rightarrow \bar{K}^{0} K^{* 0}$	$-36.27_{-5.66}^{+5.02}$	$-19.29_{-6.48}^{+8.34}$	$-32.72_{-4.82}^{+4.74}$	$-17.56_{-5.57}^{+7.65}$	\ldots
	$-42.06_{-6.50}^{+5.43}$	$-28.33_{-5.56}^{+6.91}$	$-38.64_{-5.46}^{+5.15}$	$-26.25_{-6.04}^{+6.10}$	
$B^{-} \rightarrow K^{0} K^{*-}$	$-12.64_{-4.14}^{+4.49}$	$-22.25_{-7.40}^{+4.35}$	$-9.41_{-4.82}^{+5.03}$	$-15.93_{-4.54}^{+4.95}$	\ldots
$\bar{B}^{0} \rightarrow K^{0} \bar{K}^{* 0}$	$-2.96_{-6.64}^{+8.53}$	$-18.26_{-9.82}^{+5.22}$	$0.18_{-7.16}^{+10.23}$	$-9.17_{-6.79}^{+8.89}$	
	$-12.64_{-4.00}^{+4.60}$	$-22.25_{-8.09}^{+4.24}$	$-9.25_{-4.78}^{+4.55}$	$-16.25_{-4.25}^{+4.90}$	\ldots

标 题 页

第 34 页共 43 页

返 回

全屏显示
－Direct $C P$－violating asymmetries（in units of 10^{-2} ）for $B \rightarrow P V$ decays with $\Delta S=1$ ．

Decay mode	$\mathcal{A}_{\text {CP }}^{f}$		$\mathcal{A}_{C P}^{f+a}$		EXP．
	$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	
$B^{-} \rightarrow \pi^{-} \bar{K}^{* 0}$	$1.49_{-0.14}^{+0.23}$	$0.76_{-0.34}^{+0.26}$	$1.22_{-0.13}^{+0.14}$	$0.57_{-0.34}^{+0.26}$	-9.3 ± 6.0
	$1.77_{-0.17}^{+0.24}$	$1.14_{-0.24}^{+0.21}$	$1.47{ }_{-0.15}^{+0.17}$	$0.93_{-0.26}^{+0.21}$	
$B^{-} \rightarrow \pi^{0} K^{*-}$	$14.03_{-2.44}^{+2.88}$	$18.21_{-4.15}^{+5.43}$	$11.98_{-2.10}^{+2.46}$	$15.48_{-3.59}^{+4.69}$	4 ± 29
	$13.09_{-2.66}^{+3.48}$	$14.855_{-3.07}^{+3.47}$	$11.27_{-2.40}^{+2.74}$	$12.72_{-2.43}^{+2.74}$	
$\bar{B}^{0} \rightarrow \pi^{+} K^{*-}$	$9.14_{-1.34}^{+1.51}$	$17.18_{-4.76}^{+6.39}$	$7.111_{-1.24}^{+1.31}$	$13.75_{-4.06}^{+5.50}$	-5 ± 14
	$3.89_{-0.59}^{+0.65}$	$9.16_{-2.09}^{+2.87}$	$2.86{ }_{-0.49}^{+0.52}$	$7.16_{-1.46}^{+1.93}$	
$\bar{B}^{0} \rightarrow \pi^{0} \bar{K}^{* 0}$	$-11.58_{-8.58}^{+4.15}$	$-9.94{ }_{-4.69}^{+3.14}$	$-9.20_{-5.00}^{+2.79}$	－8．34－3．77	-1_{-26}^{+27}
	$-12.14_{-7.46}^{+4.04}$	$-10.06_{-4.31}^{+3.09}$	$-9.97_{-4.79}^{+3.36}$	$-8.60{ }_{-3.68}^{+2.47}$	
$B^{-} \rightarrow K^{-} \phi$	$2.08{ }_{-0.27}^{+0.53}$	$1.07_{-0.37}^{+0.32}$	$1.61{ }_{-0.18}^{+0.23}$	$0.78_{-0.39}^{+0.30}$	3.7 ± 5.0
	$2.33_{-0.31}^{+0.56}$	$1.49_{-0.22}^{+0.21}$	$1.84{ }_{-0.20}^{+0.27}$	$1.17_{-0.23}^{+0.23}$	
$\bar{B}^{0} \rightarrow \bar{K}^{0} \phi$	$2.08_{-0.27}^{+0.50}$	$1.07_{-0.39}^{+0.33}$	$1.72_{-0.19}^{+0.27}$	$0.92_{-0.39}^{+0.25}$	9 ± 14
	$2.33_{-0.29}^{+0.58}$	$1.49_{-0.23}^{+0.20}$	$1.96_{-0.21}^{+0.33}$	$1.30_{-0.25}^{+0.19}$	

Introduction and
Decay amplitudes at． Penguin contractions． Numerical results and Conclusions

访问主页

标 题 页

第 35 页共 43 页

全 屏 显示
－Direct $C P$－violating asymmetries（in units of 10^{-2} ）for $B \rightarrow P V$ decays with $\Delta S=1$（continued）．

Decay mode	$\mathcal{A}_{C P}^{f}$		$\mathcal{A}_{C P}^{f+a}$	EXP．	
	$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$		$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	
$B^{-} \rightarrow \bar{K}^{0} \rho^{-}$	$0.49_{-0.17}^{+0.14}$	$0.93_{-0.15}^{+0.34}$	$0.37_{-0.21}^{+0.17}$	$0.67_{-0.18}^{+0.20}$	\ldots
	$0.11_{-0.32}^{+0.25}$	$0.80_{-0.20}^{+0.41}$	$-0.02_{-0.40}^{+0.29}$	$0.41_{-0.36}^{+0.28}$	
$B^{-} \rightarrow K^{-} \rho^{0}$	$-7.99_{-5.17}^{+11.58}$	$-3.62_{-6.87}^{+17.39}$	$-7.32_{-3.55}^{+4.63}$	$-4.55_{-4.26}^{+8.50}$	31_{-11}^{+12}
	$5.88_{-10.77}^{+27.73}$	$15.31_{-16.23}^{+33.85}$	$-0.38_{-5.64}^{+1362}$	$5.17_{-8.71}^{+23.92}$	
$\bar{B}^{0} \rightarrow K^{-} \rho^{+}$	$-1.76_{-0.87}^{+1.64}$	$0.24_{-1.84}^{+4.86}$	$-0.91_{-0.85}^{+1.21}$	$0.46_{-1.42}^{+2.99}$	17_{-16}^{+15}
	$4.12_{-2.50}^{+4.76}$	$7.89_{-4.88}^{+10.46}$	$3.02_{-1.67}^{+3.08}$	$5.44_{-3.07}^{+6.24}$	
$\bar{B}^{0} \rightarrow \bar{K}^{0} \rho^{0}$	$9.58_{-3.24}^{+3.69}$	$9.73_{-3.29}^{+3.86}$	$7.65_{-2.30}^{+2.85}$	$7.78_{-2.45}^{+2.67}$	\ldots
	$12.36_{-4.30}^{+5.78}$	$12.91_{-2.81}^{+5.89}$	$9.81_{-3.16}^{+3.63}$	$10.23_{-3.46}^{+4.29}$	
$B^{-} \rightarrow K^{-} \omega$	$-4.71_{-2.41}^{+2.93}$	$-2.85_{-3.31}^{+4.26}$	$-4.35_{-1.93}^{+2.05}$	$-3.04_{-2.35}^{+2.92}$	2 ± 7
	$4.75_{-5.57}^{+13.57}$	$8.69_{-7.30}^{+16.81}$	$1.39_{-3.35}^{+6.29}$	$3.94_{-4.60}^{+9.10}$	
$\bar{B}^{0} \rightarrow \bar{K}^{0} \omega$	$-9.65_{-5.65}^{+4.10}$	$-8.90_{-5.41}^{+3.91}$	$-7.61_{-4.62}^{+2.96}$	$-7.13_{-3.99}^{+2.69}$	44 ± 23
	$-12.85_{-6.22}^{+5.95}$	$-11.61_{-5.40}^{+5.50}$	$-10.55_{-7.83}^{+4.54}$	$-9.94_{-6.60}^{+4.27}$	

Introduction and
Decay amplitudes at． Penguin contractions． Numerical results and Conclusions

访问主页

标 题 页

第 36 页共 43 页

返 回

全屏显示

From these numerical results，we have the following general remarks：
－Since the strong phases are suppressed by α_{s} and／or $\Lambda_{\mathrm{QCD}} / m_{b}$ within the QCDF formalism，the direct $C P$ asymmetries for most $B \rightarrow P V$ decays are predicted to be typically small within this approach．
－Due to large cancelations among the strong phases associated with the higher order penguin contraction contributions，the new higher order con－ tributions have only small effects on the direct $C P$ asymmetries．
－However，for $b \rightarrow d$ penguin dominated $B \rightarrow K \bar{K}^{*}$ decays，since $\alpha_{4}^{c} \approx \alpha_{4}^{u}$ and $\left|V_{u b}^{*} V_{u d}\right| \approx\left|V_{c b}^{*} V_{c d}\right|$ ，large direct $C P$ asymmetries are predicted．In

Introduction and Decay amplitudes at Penguin contractions． Numerical results and Conclusions
－Both the higher order penguin contraction and the weak annihilation contri－ butions have significant impacts on the direct $C P$ asymmetry of $\bar{B}^{0} \rightarrow \pi^{0} \rho^{0}$ decay，due to the delicate cancelations among the competing terms，making these sub－leading contributing terms potentially large．
－The higher order penguin contraction contributions to the direct $C P$ asym－ metries of $\bar{B}^{0} \rightarrow \pi^{+} \rho^{-}, B^{-} \rightarrow \pi^{-} \omega, \bar{B}^{0} \rightarrow \pi^{-} \rho^{+}$，and $\bar{B}^{0} \rightarrow K^{-} \rho^{+}$decays are also quite large，increasing the direct $C P$ asymmetries of the former two， while decreasing those of the latter two by the same magnitude．
－Although the uncertainties from various input parameters are reduced to some extent，the renormalization scale dependence of the direct $C P$ asym－

Introduction and．
Decay amplitudes at．
Penguin contractions．
Numerical results and Conclusions

4．4．Ratios between the branching fractions of $B \rightarrow \pi K^{*}, K \rho$ decays

Since theoretical uncertainties in the branching ratios can be largely reduced by taking ratios among them，we define the following three ratios，just like the ones defined for $B \rightarrow \pi K$ decays．

$$
\begin{align*}
R\left(\pi K^{*}\right) & \equiv \frac{\tau_{B_{u}}}{\tau_{B_{d}}} \frac{\overline{\mathcal{B}}\left(\bar{B}^{0} \rightarrow \pi^{+} K^{*-}\right)}{\overline{\mathcal{B}}\left(B^{-} \rightarrow \pi^{-} \bar{K}^{* 0}\right)}, \tag{10}\\
R_{c}\left(\pi K^{*}\right) & \equiv 2 \frac{\overline{\mathcal{B}}\left(B^{-} \rightarrow \pi^{0} K^{*-}\right)}{\overline{\mathcal{B}}\left(B^{-} \rightarrow \pi^{-} \bar{K}^{* 0}\right)}, \tag{11}\\
R_{n}\left(\pi K^{*}\right) & \equiv \frac{1}{2} \frac{\overline{\mathcal{B}}\left(\bar{B}^{0} \rightarrow \pi^{+} K^{*-}\right)}{\overline{\mathcal{B}}\left(\bar{B}^{0} \rightarrow \pi^{0} \bar{K}^{* 0}\right)} . \tag{12}
\end{align*}
$$

With $\pi\left(K^{*}\right)$ meson replaced by $\rho(K)$ meson，we can get another three similar

Introduction and
Decay amplitudes at． Penguin contractions Numerical results and Conclusions

访问主页
标 题 页
4

第 39 页共 43 页
返 回
全屏显示

关 闭
退 出 and penguin contributions than branching ratios．
－Ratios among $C P$－averaged branching fractions of $B \rightarrow \pi K^{*}, K \rho$ decays．

	NF	$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	$\mathcal{O}\left(\alpha_{s}\right)$	$\mathcal{O}\left(\alpha_{s}+\alpha_{s}^{2}\right)$	EXP．
$R\left(\pi K^{*}\right)$	$0.84_{-0.14}^{+0.16}$	$0.80_{-0.14}^{+0.18}$	$0.77_{-0.11}^{+0.14}$	$0.76_{-0.12}^{+0.15}$	$0.76_{-0.11}^{+0.12}$	1.18 ± 0.17
	$0.75_{-0.09}^{+0.11}$	$0.74_{-0.11}^{+0.16}$	$0.74_{-0.11}^{+0.11}$	$0.72_{-0.10}^{+0.15}$	$0.73_{-0.10}^{+0.11}$	
$R_{c}\left(\pi K^{*}\right)$	$1.53_{-0.31}^{+0.45}$	$1.45_{-0.31}^{+0.49}$	$1.28_{-0.22}^{+0.29}$	$1.33_{-0.26}^{+0.37}$	$1.22_{-0.20}^{+0.25}$	1.28 ± 0.44
	$1.24_{-0.21}^{+0.27}$	$1.32_{-0.27}^{+0.45}$	$1.22_{-0.20}^{+0.28}$	$1.24_{-0.23}^{+0.32}$	$1.17_{-0.19}^{+0.23}$	
$R_{n}\left(\pi K^{*}\right)$	$1.87_{-0.53}^{+0.94}$	$1.80_{-0.53}^{+1.14}$	$1.41_{-0.32}^{+0.51}$	$1.54_{-0.42}^{+0.66}$	$1.31_{-0.26}^{+0.42}$	3.44 ± 1.68
	$1.37_{-0.29}^{+0.48}$	$1.58_{-0.44}^{+0.80}$	$1.33_{-0.28}^{+0.50}$	$1.40_{-0.34}^{+0.53}$	$1.25_{-0.24}^{+0.43}$	
$R(\rho K)$	$2.55_{-0.94}^{+2.45}$	$2.12_{-0.67}^{+1.57}$	$2.17_{-0.72}^{+1.73}$	$1.78_{-0.41}^{+0.85}$	$1.80_{-0.41}^{+0.87}$	>0.22
	$3.20_{-1.48}^{+6.80}$	$2.41_{-0.85}^{+2.62}$	$2.53_{-0.93}^{+2.78}$	$1.91_{-0.50}^{+0.04}$	$1.97_{-0.55}^{+1.16}$	
$R_{c}(\rho K)$	$1.47_{-0.66}^{+1.96}$	$1.14_{-0.41}^{+0.99}$	$1.16_{-0.43}^{+1.12}$	$0.98_{-0.26}^{+0.53}$	$0.99_{-0.30}^{+0.56}$	>0.18
	$1.52_{-0.80}^{+0.78}$	$1.14_{-0.49}^{+1.49}$	$1.21_{-0.55}^{+1.76}$	$0.94_{-0.31}^{+0.60}$	$0.95_{-0.29}^{+0.75}$	
$R_{n}(\rho K)$	$0.88_{-0.26}^{+0.44}$	$0.87_{-0.23}^{+0.34}$	$0.87_{-0.24}^{+0.35}$	$0.87_{-0.20}^{+0.25}$	$0.87_{-0.21}^{+0.26}$	0.97 ± 0.34
	$0.87_{-0.26}^{+0.52}$	$0.84_{-0.23}^{+0.39}$	$0.85_{-0.27}^{+0.40}$	$0.84_{-0.20}^{+0.26}$	$0.84_{-0.21}^{+0.26}$	

Main observations about these ratios are：
－Our theoretical predictions for most of these ratios are in agreement with the
－The current data indicate that $R_{n}\left(\pi K^{*}\right)$ is somewhat larger that $R_{c}\left(\pi K^{*}\right)$ ， but with large errors in the former．Due to the insufficient data on the $K \rho$ modes，direct experimental comparison between $R_{c}(\rho K)$ and $R_{n}(\rho K)$ is not feasible currently．
－Theoretically，differences between the two ratios R_{c} and R_{n} for both πK^{*} and $K \rho$ modes arise mainly from the EW penguin coefficient $\alpha_{3, e w}^{p}$ and the color－suppressed tree coefficient α_{2} ，both are predicted to be small here． So，the ratios R_{c} and R_{n} are expected to be approximately equal within the SM．However，due to delicate cancelations among various competing terms， they are strongly affected by sub－leading contributions．After including the
－These ratios remain nearly unaffected even with these new higher order pen－ guin contributions included，because their contributions to the decays in the same ratio are similar in nature，and hence eliminated．

5 Conclusions

Charmless $B \rightarrow P V$（with $P=(\pi, K)$ ，and $V=\left(\rho, K^{*}, \omega, \phi\right)$ ）decays have been re－analyzed within the QCDF framework，taking into account the penguin contractions of spectator－scattering amplitudes induced by the $b \rightarrow s(d) g^{*} g^{*}$ transitions，which are of order α_{s}^{2} ．

Introduction and Decay amplitudes at． Penguin contractions． Numerical results and Conclusions

Thanks to all！

Introduction and．
Decay amplitudes at．
Penguin contractions．
Numerical results and Conclusions

第 43 页共 43 页
返 回

