Recent progress in B physics

 Hsiang-nan LiAcademia Sinica, Taiwan presented at
7th HEP Annual Meeting
Gui-Lin, Oct. 28, 2006

Outlines

- Introduction
- Theories: QCDF, PQCD, and SCET
- Phenomenology:
- $\mathrm{B} \rightarrow \pi \pi, \mathrm{K} \pi$
- Mixing-induced CP in $b \rightarrow$ s penguin
- $\mathrm{B}_{\mathrm{s}}-\mathrm{B}_{\mathrm{s}}$ bar mixing
- $\mathrm{B} \rightarrow$ VV polarizations
- Conclusion

Introduction

- B physics has entered the era of precision measurement.
- Both theoretical and experimental precisions are improved.
- Discrepancies are observed. Critical examination is necessary for revealing new physics signals.

Apology

- no inclusive B decays (Wu's talk at the previous meeting).
- No semileptonic B decays (Huang, Li, Qiao...)
- no B decays into charmonia (Chao...).
- No B decays into baryons (He, Li,...)
- no B_{c} decays (Du, Lu, Zhang, Li, Ma, Li...)
- no new physics in B decays (Xiao, Yang, Wu...)

Theories

QCD-improved Factorization

(Beneke, Buchalla, Neubert, Sachrajda)

Perturbative QCD

(Keum, Li, Sanda)
Soft-collinear Effective Theory
(Bauer, Pirjol, Rothstein, Stewart)
All assume large m_{b}

QCDF

- Based on collinear factorization (Brodsky and Lepage 80).
- Compute correction to naïve factorization (NF), ie., the heavy-quark limit.

- Divergent like $\int_{0}{ }^{1} \mathrm{dx} / \mathrm{x}$ (end-point singularity) in collinear factorization

Factorization formula

- $A\left(B \rightarrow M_{1} M_{2}\right)=\left(T^{\mid *} F^{\left.B M_{1}+T^{\| *} \phi_{B}{ }^{*} \phi_{M_{1}}\right)^{*} \phi_{M_{2}}}\right.$
- T^{\prime} comes from vertex corrections, $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$

Magnetic penguin O_{89}

- $\mathrm{T}^{\prime \prime}$ comes from spectator diagrams, $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$

End-point singularity

- Singularity appears at $\mathrm{O}\left(1 / m_{b}\right)$, twist-3 spectator and annihilation amplitudes, parameterized as $X=\left(1+\rho e^{i \phi}\right) \ln \left(m_{b} / \Lambda\right)$

- For QCDF to be predictive, $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}\right)$ corrections are better to be small \approx FA.
- Data show important $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}\right)$. Different free (ρ, ϕ) must be chosen for $B \rightarrow P P, P V, V P$.

$\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ corrections

- b $\rightarrow \mathrm{d}(\mathrm{s}) \mathrm{g}^{*} \mathrm{~g}^{*}(\mathrm{Li}$, Yang 05, 06)
- Enhance penguin and rates of penguindominated modes, such as $B \rightarrow \pi K$, but....
- Minor effects on tree-dominated modes, such as $B \rightarrow \pi \pi$.
- Incomplete $\mathrm{O}\left(\alpha_{c}{ }^{2}\right)$ for $\mathrm{T}^{\text {II }}$.

QCDF/SCET---complete $O\left(\alpha_{s}{ }^{2}\right) T^{\prime \prime}$

- Motivated by $\mathrm{B} \rightarrow \pi \pi$ data:
- O($\alpha_{s}{ }^{2}$) for J, major effect (Beneke, Yang 05)
- $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ for $\mathrm{H}^{\prime \prime}$ (Beneke, Jager 05)
- $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ for $\mathrm{H}^{\text {II }}$ of penguin amplitudes (BJ 06).

- Enhance color-suppressed tree, not QCD penguin

PQCD

- End-point singularity means breakdown of collinear factorization
- Use more "conservative" k_{T} factorization (Li and Sterman 92)
- Parton k_{T} smear the singularity

$$
\int_{0}^{1} d x \frac{1}{x+k_{T}^{2} / m_{B}^{2}}
$$

- Same singularity in form factor is also smeared
- No free parameters

Factorization picture

Sudakov factors S,

 summation of $\alpha_{s} \ln ^{2}\left(m_{b} / k_{T}\right)$ to all orders, describe parton distribution in k_{T}PQCD picture for two-body nonleptonic decays. Always collinear gluons

Large k_{T} Small b
k_{T} accumulates after infinitely many gluon exchanges, similar to DGLAP evolution up to $\mathrm{k}_{\mathrm{T}} \sim \mathrm{Q}$
$\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ corrections (Li, Mishima, Sanda 05)

- LO: all pieces at LO
- $\mathrm{LO}_{\text {nlowc: }}$ NLO Wilson coefficients
- VC: vertex correction
- QL: quark loops
- MP: Magnetic penguin $\}$ decrease P by 10%

- Corrections to form factors are nontrivial (Ma, Wang 04; 06).

SCET

- Two scales in B decays: $m_{b} \Lambda$ and $m_{b}{ }^{2}$
- Full theory \rightarrow SCET $_{1}$: integrate out the lines off-shell by $\mathrm{m}_{\mathrm{b}}{ }^{2}$

SCET $_{\|}$

- SCET $_{1} \rightarrow$ SCET $_{11}$: integrate out the lines off-shell by $\mathrm{m}_{\mathrm{b}} \Lambda$

- Compared to QCDF, $\mathrm{T}^{\prime \prime} \rightarrow \mathrm{T}\left(\mu_{0}\right) \mathrm{J}\left(\mu_{0}, \mu\right)$
- Framework for $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ QCDF/SCET.

BPRS's SCET

- Do not attempt to calculate matrix elements in SCET, but treat them as free parameters determined by data (Bauer, Pirjol, Rothstein, Stewart 04).
- Even introduce arbitrary charming penguins in order to input strong phases.
- BPRS's SCET is not very different from amplitude parameterization using SU(3).
- Intensive application by Williamson, Zupan 06.

Zero-bin subtraction (Manohar, Stewart 06)

- Effective theory with more than two momenta, IR modes are doubly counted.
- $P_{1}=0$ bin should be removed

- Form factor is factorizable
- Merge with PQCD

Soft quark absorbed into $\phi_{\mathrm{B}} \quad$ energetic

Higher-power corrections are not yet explored!

A much more difficult job

Phenomenology

$\mathrm{B} \rightarrow \pi \pi, \mathrm{K} \pi$

Naïve power counting

- Estimate order of magnitude of B decay amplitudes in power of the Wolfenstein parameter $\lambda \sim 0.22$
- It is not a power counting from any rigorous theory
- Amplitude~ (CKM) (Wilson coefficient)

- CKM matrix elements

$$
|\rho-i \eta| \approx 0.4
$$

$\begin{aligned} &\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)=\left(\begin{array}{ccc}1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1\end{array}\right) \\ &=\left(\begin{array}{ccc}O(1) & O(\lambda) & O\left(\lambda^{4}\right) \\ O(\lambda) & O(1) & O\left(\lambda^{2}\right) \\ O\left(\lambda^{3}\right) & O\left(\lambda^{2}\right) & O(1)\end{array}\right), \\ & O(1): a_{1},\end{aligned}$

- Wilson coefficients $O(\lambda): a_{2}, 1 / N_{c}$

$$
\begin{aligned}
& \mathrm{a}_{1}=\mathrm{C}_{2}+\mathrm{C}_{1} / \mathrm{N}_{\mathrm{c}} \\
& \mathrm{a}_{2}=\mathrm{C}_{1}+\mathrm{C}_{2} / \mathrm{N}_{\mathrm{c}}
\end{aligned}
$$

$$
O\left(\lambda^{2}\right): C_{4}, C_{6}, a_{4}, a_{6}
$$

$$
O\left(\lambda^{3}\right): C_{3}, C_{5}, C_{9}, a_{3}, a_{5}, a_{9}
$$

$$
O\left(\lambda^{4}\right): C_{10},
$$

$$
O\left(\lambda^{5}\right): C_{7}, C_{8}, a_{7}, a_{8}, a_{10}
$$

Quark amplitudes

 most recent work by Wu, Zhou, Zhuang

Color-allowed tree T
Color-suppressed tree C

QCD penguin P
Electroweak penguin P_{ew}

$\pi \pi$ parametrization

$$
\begin{aligned}
\sqrt{2} A\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right) & =-T\left[1+\frac{C}{T}+\frac{P_{e w}}{T} e^{i \phi_{2}}\right] \\
A\left(B_{d}^{0} \rightarrow \pi^{+} \pi^{-}\right) & =-T\left(1+\frac{P}{T} e^{i \phi_{2}}\right) \\
\sqrt{2} A\left(B_{d}^{0} \rightarrow \pi^{0} \pi^{0}\right) & =T\left[\left(\frac{P}{T}-\frac{P_{e w}}{T}\right) e^{i \phi_{2}}-\frac{C}{T}\right]
\end{aligned}
$$

$\lambda \approx 0.2 \quad \frac{P}{T} \sim \lambda, \quad \frac{C}{T} \sim \lambda, \quad \frac{P_{e w}}{T} \sim \lambda^{2} . \quad$ Treedominant $\left(\mathrm{C}_{4} / \mathrm{C}_{2}\right)\left(\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{tb}} / \mathrm{V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{ub}}\right) / 1 \sim\left(\lambda^{2} / 1\right)\left(\lambda^{3} / \lambda^{4}\right) \sim \lambda$

$\mathrm{B} \rightarrow \pi \pi$ puzzle

- P, C, and $P_{e w}$ in $\pi^{0} \pi^{0}$ are all subleading.
- We should have $\operatorname{Br}\left(\pi^{0} \pi^{0}\right) \approx \mathrm{O}\left(\lambda^{2}\right) \operatorname{Br}\left(\pi^{+} \pi^{-}\right)$
- Data show $\operatorname{Br}\left(\pi^{0} \pi^{0}\right) \approx \mathrm{O}(\lambda) \operatorname{Br}\left(\pi^{+} \pi^{-}\right)$

$$
\begin{array}{ll}
\mathrm{B}(\mathrm{BO} \rightarrow \pi+\pi-)=(5.2 \pm 0.2) \times 10^{-6} & \\
\mathrm{~B}(\mathrm{~B}+\rightarrow \pi+\pi 0)=(5.7 \pm 0.4) \times 10^{-6} & \text { reduced } \mathrm{f} \\
\mathrm{~B}(\mathrm{BO} \rightarrow \pi 0 \pi 0)=(1.3 \pm 0.2) \times 10^{-6} \longleftarrow & 1.5 \times 10^{-6}
\end{array}
$$

- Large P and/or C---motivates $\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)$ QCDF/SCET. It remains as a puzzle, because $B\left(\rho^{0} \rho^{0}\right)=(1.16 \pm 0.46) \times 10^{-6}(\mathrm{Li}$, Mishima 06).

$K \pi$ parameterization

$$
\begin{aligned}
& A\left(B^{+} \rightarrow K^{0} \pi^{+}\right)=P^{\prime}, \\
& A\left(B_{d}^{0} \rightarrow K^{+} \pi^{-}\right)=-P^{\prime}\left(1+\frac{T^{\prime}}{P^{\prime}} e^{i \phi_{3}}\right), \\
& \sqrt{2} A\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=-P^{\prime}\left[1+\frac{P_{e w}^{\prime}}{P^{\prime}}+\left(\frac{T^{\prime}}{P^{\prime}}+\frac{C^{\prime}}{P^{\prime}}\right) e^{i \phi_{3}}\right], \\
& \sqrt{2} A\left(B_{d}^{0} \rightarrow K^{0} \pi^{0}\right)=P^{\prime}\left(1-\frac{P_{e w}^{\prime}}{P^{\prime}}-\frac{C^{\prime}}{P^{\prime}} e^{i \phi_{3}}\right), \\
& \frac{T^{\prime}}{P^{\prime}} \sim \lambda, \quad \frac{P_{e w}^{\prime}}{P^{\prime}} \sim \lambda, \quad \frac{C^{\prime}}{P^{\prime}} \sim \lambda^{2} \\
&\left(\mathrm{C}_{2} / \mathrm{C}_{4}\right)\left(\mathrm{V}_{\mathrm{us}} \vee_{\mathrm{ub}} / \mathrm{V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}\right) \sim\left(1 / \lambda^{2}\right)\left(\lambda^{5} / \lambda^{2}\right) \sim \lambda
\end{aligned}
$$

Direct CP in $\mathrm{B} \rightarrow \mathrm{K} \pi$

- $\mathrm{K}^{+} \pi^{-}$and $\mathrm{K}^{+} \pi^{0}$ differ by subleading amplitudes, $\mathrm{P}_{\mathrm{ew}} / \mathrm{P} \sim \mathrm{C} / \mathrm{T} \sim \lambda$. Their $\subset P$ are expected to be similar.

$$
\begin{aligned}
A_{C P}^{0} & =\frac{\operatorname{Br}\left(\bar{B}_{d}^{0} \rightarrow K^{-} \pi^{+}\right)-\operatorname{Br}\left(B_{d}^{0} \rightarrow K^{+} \pi^{-}\right)}{\operatorname{Br}\left(\bar{B}_{d}^{0} \rightarrow K^{-} \pi^{+}\right)+\operatorname{Br}\left(B_{d}^{0} \rightarrow K^{+} \pi^{-}\right)}, \\
A_{C P}^{\prime c} & =\frac{\operatorname{Br}\left(B^{-} \rightarrow K^{-} \pi^{0}\right)-\operatorname{Br}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)}{\operatorname{Br}\left(B^{-} \rightarrow K^{-} \pi^{0}\right)+\operatorname{Br}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)},
\end{aligned}
$$

- Their data differ by more than 3σ !
- $A_{\text {CP }}\left(K^{+} \pi^{-}\right)=-(9.3 \pm 1.5) \%$
- $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{K}^{+} \pi^{0}\right)=(4.7 \pm 2.6) \%$, large P_{ew} or C ?
- $b \rightarrow s g^{*} g^{*}$, FSI can not resolve the puzzle.

Large strong phase

- $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{K}^{+} \pi^{-}\right) \approx-0.115$ implies sizable $\delta_{\mathrm{T}} \sim 15^{\circ}$ between T and P (Keum, Li, Sanda 00)

Explanation 1

- How to understand the small $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{K}^{+} \pi^{0}\right)$?
- Large P_{Ew} to rotate P (Buras et al.; Yoshikawa; Gronau and Rosner; Ciuchini et al., Kundu and Nandi, Wu and Zhou)
- Also motivated by old large $B\left(K^{0} \pi^{0}\right)$ data \Rightarrow new physics?

Explanation 2

- Large C to rotate T (Charng and Li; He and McKellar)
\Rightarrow mechanism missed in naïve power counting?
- C is subleading by itself. Try NLO PQCD.

Vertex correction

- Vertex correction enhances $\mathrm{C} \propto \mathrm{a}_{2}$, and makes it almost imaginary.

Without vertex correction

Re, with vertex correction Im, with vertex correction Is negative. It rotates T !

PQCD results

Mode	Data [1]	LO	LO ${ }_{\text {NLOWC }}$	+VC	+QL	+MP	+NLO	
$B^{ \pm} \rightarrow \pi^{ \pm} K^{0}$	24.1 ± 1.3	17.3	32.9	31.6	34.9	24.5	$24.9_{-8.2}^{+13.9}$ ((3.2)
$B^{ \pm} \rightarrow \pi^{0} K^{ \pm}$	12.1 ± 0.8	10.4	18.7	17.7	19.7	14.2	$14.2_{-5.8}^{+10.2}$	
$B^{0} \rightarrow \pi^{\mp} K^{ \pm}$	18.9 ± 0.7	14.3	28.0	26.9	29.7		$21.1{ }_{-8.4}^{+15.7}$	
$B^{0} \rightarrow \pi^{0} K^{0}$	11.5 ± 1.0	5.7	12.2	11.9	13.0		9.2-3.3 ${ }^{+5.6}$	2.01
$B^{0} \rightarrow \pi^{\mp} \pi^{ \pm}$	5.0 ± 0.4	7.1	6.8	6.6	6.9	6.7	$6.6{ }_{-3.8}^{+6.7}$	
$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$	5.5 ± 0.6	3.5	4.2	4.1	4.2	4.2	$4.1+3.5\}$	
$B^{0} \rightarrow \pi^{0} \pi^{0}$	1.45 ± 0.29	0.12	0.28	0.37	0.29	0.21	$0.30_{-0.21}^{+0.49}$	(0.091

Mode	Data [1]	LO	$\mathrm{LO}_{\text {NLOW }}$	+VC	+Q	+MP	+NLO
$B^{ \pm} \rightarrow \pi^{ \pm} K^{0}$	-0.02 ± 0.04	-0.01	-0.01	-0.01	0.00	-0.01	$0.00 \pm 0.00(\pm 0.00)$
$B^{ \pm} \rightarrow \pi^{0} K^{ \pm}$	0.04 ± 0.04	-0.08	-0.06	-0.01	-0.05	-0.0	$0.01_{-0.05}^{+0.03}(+0.05)$
$B^{\circ} \rightarrow \pi^{\mp} K$	11	-0.12	0.08	-0.00	-0.06	-0.10	$-0.09_{-0.08(+0.06)}^{+0.06}$
$B^{0} \rightarrow \pi^{0} K^{0}$		-0.02	0.00	-0.07	0.00	0.00	$-0.07_{-0.03}^{+0.03(+0.01)}$
$B^{0} \rightarrow \pi^{\mp} \pi^{ \pm}$	0.37 ± 0.10	0.14	0.19	0.21	0.16	0.20	$0.18_{-0.12(-0.06)}^{+0.20}(+0.07)$
$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$	0.01 ± 0.06	0.00	0.00	0.00	0.00	0.00	$0.00 \pm 0.00(\pm 0.00)$
$B^{0} \rightarrow \pi^{0} \pi^{0}$	$0.28{ }_{-0.39}^{+0.40}$	-0.04	-0.34	0.65	-0.41	-0.43	$\begin{aligned} & 0.63_{-0.34(-0.15)}^{+0.35}(+0.09) \end{aligned}$

QCDF

δ_{T} has a wrong sign in QCDF. C makes the

 situation worse.

SCET

- C/T is real in leading SCET, and large from the $\pi \pi$ data.
- C can not reduce $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{K}^{+} \pi^{0}\right)$ (hep-ph/0510241).

Large P_{ew} ?

- $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{K}^{+} \pi^{-}\right)$is insensitive to NLO. NLO could modify C , and thus $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{K}^{+} \pi^{0}\right)$. C remains subleading, and branching ratios do not change much.
- Predicted $B\left(\pi^{0} \mathrm{~K}^{0}\right)$ is smaller than old data.
$R_{n}=\frac{1}{2} \frac{B\left(B^{0} \rightarrow \pi^{\mp} K^{ \pm}\right)}{B\left(B^{0} \rightarrow \pi^{0} K^{0}\right)}=0.79 \pm 0.08$
- New data soften the need for large $P_{\text {ew }}$

PQCD (05)

Mixing-induced $\subset P^{\prime}$ in $b \rightarrow s$

Calculation of the time-dependent CP asymmetry

$$
\begin{aligned}
A_{f_{C P}}(t) & =\frac{\left.\left.\left|\left\langle f_{C P}\right| H\right| \bar{B}^{0}(t)\right\rangle\left.\right|^{2}-\left|\left\langle f_{C P}\right| H\right| B^{0}(t)\right\rangle\left.\right|^{2}}{\left.\left.\left|\left\langle f_{C P}\right| H\right| \bar{B}^{0}(t)\right\rangle\left.\right|^{2}+\left|\left\langle f_{C P}\right| H\right| B^{0}(t)\right\rangle\left.\right|^{2}} \\
& =\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f_{C P}\right)-\Gamma\left(B^{0}(t) \rightarrow f_{C P}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f_{C P}\right)+\Gamma\left(B^{0}(t) \rightarrow f_{C P}\right)}
\end{aligned}
$$

$$
\begin{gathered}
A_{f_{C P}}(t)=S \cdot \sin (\Delta m \cdot t)-C \cdot \cos (\Delta m \cdot t) \\
S=\frac{2 \cdot \operatorname{Im}(\lambda)}{1+|\lambda|^{2}} \quad C=\frac{1-|\lambda|^{2}}{1+|\lambda|^{2}}
\end{gathered}
$$

1 decay amplitude:

$$
\begin{aligned}
|\lambda|=1 \quad \Rightarrow \quad S & =\operatorname{Im}(\lambda), \quad C=0 \\
A_{f_{C P}}(t) & =\operatorname{Im}(\lambda) \cdot \sin (\Delta m \cdot t)
\end{aligned}
$$

Calculating λ

$$
\begin{aligned}
& B^{0} \rightarrow J / \psi K_{s}^{0} \quad \lambda=(-1) \cdot \frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}^{*}} \cdot \frac{V_{c s}^{*} V_{c b}}{V_{c s} V_{c b}^{*}} \cdot \frac{V_{c d}^{*} V_{c s}}{V_{c d} V_{c s}^{*}} \operatorname{Im}(\lambda)=\sin (2 \beta) \\
& (b \rightarrow c \overline{c s}) \times\left(K^{0} \rightarrow K_{s}^{0}\right)
\end{aligned} \prod_{\text {K-Kbar mixing }}
$$

$\sin 2 \phi_{1} / \sin 2 \beta$

- 1 decay amplitude, $\lambda_{\mathrm{f}_{\mathrm{CP}}}=\exp \left(-2 \mathrm{i} \phi_{1}\right)$
- Measure $\mathrm{S}_{\mathrm{f} C P} \propto \operatorname{Im} \lambda_{\mathrm{f}_{\mathrm{CP}}} \Rightarrow$ measure $\sin \left(2 \phi_{1}\right)$
- Either pure-tree or pure-penguin modes serve the purpose
- Tree-dominant $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$, penguin pollution:

$$
\mathrm{P} / \mathrm{T} \sim\left(\mathrm{C}_{4} / \mathrm{C}_{2}\right)\left(\mathrm{V}_{\mathrm{us}} \mathrm{~V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cs}} \mathrm{~V}_{\mathrm{cb}}\right) \sim \lambda^{4} \sim 0.2 \%
$$

- Penguin-dominant $\mathrm{b} \rightarrow \mathrm{s}$, tree pollution:

$$
\lambda_{\pi^{0} K_{S}}=-e^{-2 i \phi_{1}} \frac{P^{\prime}-P_{e w}^{\prime}-C^{\prime} e^{-i \phi \phi_{3}}}{P^{\prime}-P_{e w}^{\prime}-C^{\prime} e^{i \phi_{3}}} .
$$

$C^{\prime} / P^{\prime} \sim \lambda^{2} \sim 5 \%$

$\sin \left(2 \beta^{\text {eff }}\right) / \sin \left(2 \phi_{1}^{\text {eff }}\right)$

LP 2005
PRELIMINARY

Penguin-dominated
$\Delta S \equiv " \sin 2 \phi_{1}^{\prime \prime}-\sin 2 \phi_{1}$

Tree-dominated
$\triangle S \neq 0$ by
about 1σ
A puzzle?
$\sin \left(2 \beta^{\text {eff }}\right) \equiv \sin \left(2 \phi_{1}^{\text {eff }}\right)$
PRELIMINARY

Δ S puzzle is still there

Recent theoretical calculation of $\Delta \mathrm{S}$

	QCDFFFSI Cheng-Chua- Soni	QCDF Beneke	QCDF Buchalla- Hiller-Nir-Raz	SCET Williamson-Zupan
$\Delta S(\phi \mathrm{Ks})$	$0.03_{-0.04}^{+0.01}$	0.02 ± 0.01	0.02	PQCD Li, Mishima
$\Delta \mathrm{S}\left(\eta^{\prime} \mathrm{KS}\right)$	$0.00_{-0.04}^{+0.00}$			

$\Delta S \propto \cos \delta_{\mathrm{C}}$, large C but $\delta_{\mathrm{C}} \approx 90^{\circ}$ in NLO PQCD
All approaches gave consistent results, and small uncertainty. Tree pollution remains small even with NLO. Promising new physics signal, if data persist.

$B_{s}-B_{s}$ bar mixing

$\Delta \mathrm{m}_{\mathrm{d}}$ and $\Delta \mathrm{m}_{\mathrm{s}}$: constraints in the $(\rho-\eta)$ plane

$\Delta m_{s}=\frac{G_{F}^{2}}{6 \pi^{2}} m_{B_{s}} m_{W}^{2} \eta_{B} S_{0}\left(x_{t}\right) f_{B_{s}}^{2} B_{s}\left|V_{t s} V_{t b}^{*}\right|^{2}$
The point is:

Very weak dependence on ρ and η

$$
f_{B_{s}}^{2} B_{s}=\frac{f_{B_{s}}^{2} B_{s}}{f_{B_{s}}^{2} B_{d}} f_{B_{d}}^{2} B_{d}=\xi^{2} f_{B_{d}}^{2} B_{d}
$$

$\xi: S U(3)$-breaking corrections

Measurement of Δm_{s} reduces the uncertainties on $f^{2}{ }_{B_{d}} B_{d}$ since ξ is better known from Lattice QCD

$$
\sigma_{\text {rel }}\left(f_{\delta_{d / s}}^{2} B_{d / s}\right)=36 \% \rightarrow \quad \sigma_{\text {re }}\left(\xi^{2}=f_{\varepsilon_{i}}^{2} B_{s} \mid f_{s_{d}}^{2} B_{d}\right)=10 \%
$$

\rightarrow Leads to improvement of the constraint from $\Delta \mathrm{m}_{\mathrm{d}}$ measurement on $\left|\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{tb}}^{*}\right|^{2}$

$$
\Delta m_{d}=\frac{G_{F}^{2}}{6 \pi^{2}} m_{B_{d}} m_{W}^{2} \eta_{B} S_{0}\left(x_{t}\right) f_{B_{d}}^{2} B_{d}\left|V_{t d} V_{t b}^{*}\right|^{2} \propto A^{2} \lambda^{6}\left[(1-\bar{\rho})^{2}+\bar{\eta}^{2}\right]
$$

$\Delta \mathrm{m}_{\mathrm{s}}$

The signal has a significance of 5.4σ

Constraint on $\left|V_{\mathrm{td}} / V_{\mathrm{ts}}\right|$

$\frac{\Delta m_{d}}{\Delta m_{s}}=\frac{m_{B d}}{m_{B s}} \xi_{\Delta m}^{-2} \frac{\left|V_{t d}\right|^{2}}{\left|V_{t s}\right|^{2}}$
\rightarrow First strongindication that $B_{s}-B_{s}$ mixing is probably SMlike.

Putting it all together

Inputs:

$$
\begin{gathered}
\left|\frac{V_{u b}}{V_{c b}}\right| \\
\Delta m_{d} \\
\Delta m_{s} \\
B \rightarrow \tau v \\
\left|\varepsilon_{K}\right|
\end{gathered}
$$

$\sin 2 \beta$

LHCb physics

- It is time to calculate B_{s} decays
- Yu, Li, Lu 05, 06
- Xiao, Chen, Guo 06; Xiao, Liu, Wang 06
- Wu, Zhong, Zuo 06

Polarization in $\mathrm{B} \rightarrow \mathrm{VV}$

- Many works from Lu's group using PQCD

Decay	Branching ratio		polarization fraction $R_{L}(\%)$			$R_{\\|}(\%)$
	theory	exp.	theory	exp.		
$B^{0} \rightarrow \rho^{-} K^{*+}$	$10-13$	≤ 24	$71-78$		12	10
$B^{+} \rightarrow \rho^{+} K^{* 0}$	$13-17$	10.5 ± 1.8	$76-82$	66 ± 7	13	10
$B^{+} \rightarrow \rho^{0} K^{*+}$	$6-9$	$10.6_{-3.5}^{+3.8}$	$78-85$	$96_{-15}^{+4} \pm 4$	11	11
$B^{+} \rightarrow \omega K^{*+}$	$5-8$	<7.4	$73-81$		19	9
$B^{0} \rightarrow \rho^{+} \rho^{-}$	$35 \pm 5 \pm 4$	30 ± 6	94	96_{-7}^{+4}	3	3
$B^{+} \rightarrow \rho^{+} \rho^{0}$	$17 \pm 2 \pm 1$	$26.4_{-6.4}^{+6.1}$	94	99 ± 5	4	2
$B^{+} \rightarrow \rho^{+} \omega$	$19 \pm 2 \pm 1$	$12.6_{-3.8}^{+4.1}$	97	88_{-15}^{+12}	1.5	1.5
$B^{0} \rightarrow \rho^{0} \rho^{0}$	$0.9 \pm 0.1 \pm 0.1$	<1.1	60	-	22	18
$B^{0} \rightarrow \rho^{0} \omega$	$1.9 \pm 0.2 \pm 0.2$	<3.3	87	-	6.5	6.5
$B^{0} \rightarrow \omega \omega$	$1.2 \pm 0.2 \pm 0.2$	<19	82	-	9	9

Conclusion

- Great progress in theoretical and experimental studies of B physics has been made.
- Discrepancies have appeared, but are not significant enough for new physics discovery.
- Continuous effort is required.

