Recent progress in B physics Hsiang-nan Li Academia Sinica, Taiwan presented at 7th HEP Annual Meeting Gui-Lin, Oct. 28, 2006

Outlines

- Introduction
- Theories: QCDF, PQCD, and SCET
- Phenomenology:
- B $\rightarrow \pi\pi$, K π
- Mixing-induced C/P in b- s penguin
- B_s–B_sbar mixing
- $B \rightarrow VV$ polarizations
- Conclusion

Introduction

- B physics has entered the era of precision measurement.
- Both theoretical and experimental precisions are improved.
- Discrepancies are observed. Critical examination is necessary for revealing new physics signals.

Apology

- no inclusive B decays (Wu's talk at the previous meeting).
- No semileptonic B decays (Huang, Li, Qiao…)
- no B decays into charmonia (Chao...).
- No B decays into baryons (He, Li,...)
- no B_c decays (Du, Lu, Zhang, Li, Ma, Li...)
- no new physics in B decays (Xiao, Yang, Wu…)

Theories

QCD-improved Factorization

(Beneke, Buchalla, Neubert, Sachrajda) Perturbative QCD

(Keum, Li, Sanda)

Soft-collinear Effective Theory

(Bauer, Pirjol, Rothstein, Stewart)

All assume large m_b

QCDF

- Based on collinear factorization (Brodsky and Lepage 80).
- Compute correction to naïve factorization (NF), ie., the heavy-quark limit.

Divergent like ∫₀¹ dx/x (end-point singularity) in collinear factorization

Factorization formula

- $A(B \rightarrow M_1M_2) = (T^{I*}F^{BM_1} + T^{II*}\phi_B^*\phi_{M_1})^*\phi_{M_2}$
- T^I comes from vertex corrections, $O(\alpha_s)$

• T^{II} comes from spectator diagrams, $O(\alpha_s)$

End-point singularity

• Singularity appears at O(1/m_b), twist-3 spectator and annihilation amplitudes, parameterized as $X=(1+\rho e^{i\phi})ln(m_b/\Lambda)$

- For QCDF to be predictive, $O(1/m_b)$ corrections are better to be small \approx FA.
- Data show important O(1/m_b). Different free (ρ,ϕ) must be chosen for B \rightarrow PP, PV, VP.

$O(\alpha_s^2)$ corrections

- $b \rightarrow d(s)g^*g^*$ (Li, Yang 05, 06)
- Enhance penguin and rates of penguindominated modes, such as $B \rightarrow \pi K$, but....
- Minor effects on tree-dominated modes, such as $B \rightarrow \pi \pi$.
- Incomplete $O(\alpha_s^2)$ for T^{\parallel} .

QCDF/SCET---complete O(α_s^2) T^{II}

- T^{II}=H^{II}*J (see SCET)
- Motivated by $B \rightarrow \pi \pi$ data:
- O(α_s²) for J, major effect (Beneke, Yang 05)
- O(α_s²) for H^{II}
 (Beneke, Jager 05)
- O(α_s²) for H^{II} of penguin amplitudes (BJ 06).
- Enhance color-suppressed tree, not QCD penguin

PQCD

- End-point singularity means breakdown of collinear factorization
- Use more "conservative" k_T factorization (Li and Sterman 92)

 $F^{B\pi}$

Parton k_T smear the singularity

b

6

- Same singularity in form factor is also smeared
- No free parameters

Factorization picture

 k_T accumulates after infinitely many gluon exchanges, similar to DGLAP evolution up to $k_T \sim Q$

$O(\alpha_s^2)$ corrections (Li, Mishima, Sanda 05)

- LO: all pieces at LO
- LO_{NLOWC}: NLO Wilson coefficients
- VC: vertex correction
- QL: quark loops
- MP: Magnetic penguin _

 $B \xrightarrow{K} \\ B \xrightarrow{K} \\ B$

0%

decrease P by

• Corrections to form factors are nontrivial (Ma, Wang 04; 06).

SCET

- Two scales in B decays: $m_b \Lambda$ and m_b^2
- Full theory \rightarrow SCET_I: integrate out the lines off-shell by $m_b{}^2$

SCET

• SCET_I \rightarrow SCET_{II}: integrate out the lines off-shell by m_b Λ

- Compared to QCDF, $T^{II} \rightarrow T(\mu_0)J(\mu_0,\mu)$
- Framework for $O(\alpha_s^2)$ QCDF/SCET.

BPRS's SCET

- Do not attempt to calculate matrix elements in SCET, but treat them as free parameters determined by data (Bauer, Pirjol, Rothstein, Stewart 04).
- Even introduce arbitrary charming penguins in order to input strong phases.
- BPRS's SCET is not very different from amplitude parameterization using SU(3).
- Intensive application by Williamson, Zupan 06.

Zero-bin subtraction (Manohar, Stewart 06)

- Effective theory with more than two momenta, IR modes are doubly counted.
- P₁=0 bin should be removed

h

energetic

- Form factor is factorizable
- Merge with PQCD $F^{B\pi}$ ϕ_{B}

Higher-power corrections are not yet explored!

A much more difficult job

Phenomenology

$B \rightarrow \pi \pi$, $K \pi$

Naïve power counting

- Estimate order of magnitude of B decay amplitudes in power of the Wolfenstein parameter $\lambda \sim 0.22$
- It is not a power counting from any rigorous theory
- Amplitude \sim (CKM) (Wilson coefficient)

• CKM matrix elements

|ρ-iη|≈ 0.4

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} O(1) & O(\lambda) & O(\lambda^4) \\ O(\lambda) & O(1) & O(\lambda^2) \\ O(\lambda^3) & O(\lambda^2) & O(1) \end{pmatrix} ,$$

• Wilson coefficients
$$O(1) : a_1$$
,
 $O(\lambda) : a_2, 1/N_c$

 $\begin{array}{ll} \mathsf{a_1=C_2+C_1/N_c} & O(\lambda^2):C_4\ ,C_6\ ,a_4\ ,a_6\\ a_2=C_1+C_2/N_c & O(\lambda^3):C_3\ ,C_5\ ,C_9\ ,a_3\ ,a_5\ ,a_9\\ O(\lambda^4):C_{10}\ ,\\ O(\lambda^5):C_7\ ,C_8\ ,a_7\ ,a_8\ ,a_{10} \end{array}$

 $\Delta(1)$

Quark amplitudes

most recent work by Wu, Zhou, Zhuang

$\pi\pi$ parameterization

$$\sqrt{2}A(B^+ \to \pi^+ \pi^0) = -T\left[1 + \frac{C}{T} + \frac{P_{ew}}{T}e^{i\phi_2}\right],$$

$$A(B^0_d \to \pi^+ \pi^-) = -T\left(1 + \frac{P}{T}e^{i\phi_2}\right),$$

$$\sqrt{2}A(B^0_d \to \pi^0 \pi^0) = T\left[\left(\frac{P}{T} - \frac{P_{ew}}{T}\right)e^{i\phi_2} - \frac{C}{T}\right],$$

$B \rightarrow \pi \pi puzzle$

- P, C, and P_{ew} in $\pi^0\pi^0$ are all subleading.
- We should have $Br(\pi^0\pi^0) \approx O(\lambda^2)Br(\pi^+\pi^-)$
- Data show $Br(\pi^0\pi^0) \approx O(\lambda)Br(\pi^+\pi^-)$

B(B0 → $\pi + \pi -$) = (5.2 ± 0.2)× 10⁻⁶ B(B+ → $\pi + \pi 0$) = (5.7 ± 0.4)× 10⁻⁶ reduced from B(B0 → $\pi 0 \pi 0$) = (1.3 ± 0.2)× 10⁻⁶ ← 1.5× 10⁻⁶

• Large P and/or C---motivates $O(\alpha_s^2)$ QCDF/SCET. It remains as a puzzle, because $B(\rho^0 \rho^0)=(1.16 \pm 0.46) \times 10^{-6}$ (Li, Mishima 06).

$K\pi$ parameterization

$$\begin{split} A(B^+ \to K^0 \pi^+) &= P' ,\\ A(B^0_d \to K^+ \pi^-) &= -P' \left(1 + \frac{T'}{P'} e^{i\phi_3} \right) ,\\ \sqrt{2}A(B^+ \to K^+ \pi^0) &= -P' \left[1 + \frac{P'_{ew}}{P'} + \left(\frac{T'}{P'} + \frac{C'}{P'} \right) e^{i\phi_3} \right] \\ \sqrt{2}A(B^0_d \to K^0 \pi^0) &= P' \left(1 - \frac{P'_{ew}}{P'} - \frac{C'}{P'} e^{i\phi_3} \right) ,\\ \frac{T'}{P'} \sim \lambda , \quad \frac{P'_{ew}}{P'} \sim \lambda , \quad \frac{C'}{P'} \sim \lambda^2 \\ \begin{pmatrix} C_2/C_4 \end{pmatrix} (V_{us}V_{ub}/V_{ts}V_{tb}) \sim (1/\lambda^2)(\lambda^5/\lambda^2) \sim \lambda \end{split}$$

Direct $\mathcal{C} \not\!\!\!\! \stackrel{\checkmark}{\mathsf{P}}$ in $B \rightarrow K \pi$

- K⁺ π^{-} and K⁺ π^{0} differ by subleading amplitudes, P_{ew}/P ~ C/T~ λ . Their OP are expected to be similar. $A^{0}_{CP} = \frac{\operatorname{Br}(\bar{B}^{0}_{d} \to K^{-}\pi^{+}) - \operatorname{Br}(B^{0}_{d} \to K^{+}\pi^{-})}{\operatorname{Br}(\bar{B}^{0}_{d} \to K^{-}\pi^{+}) + \operatorname{Br}(B^{0}_{d} \to K^{+}\pi^{-})},$ $A^{'c}_{CP} = \frac{\operatorname{Br}(B^{-} \to K^{-}\pi^{0}) - \operatorname{Br}(B^{+} \to K^{+}\pi^{0})}{\operatorname{Br}(B^{-} \to K^{-}\pi^{0}) + \operatorname{Br}(B^{+} \to K^{+}\pi^{0})},$
- Their data differ by more than $3\sigma!$
- $A_{CP}(K^{+}\pi^{-})=-(9.3 \pm 1.5)\%$
- $A_{CP}(K^{+}\pi^{0})=(4.7 \pm 2.6)\%$, large P_{ew} or C?
- $b \rightarrow sg^*g^*$, FSI can not resolve the puzzle.

Large strong phase

• $A_{CP}(K^+\pi) \approx -0.115$ implies sizable $\delta_T \sim 15^{\circ}$ between T and P (Keum, Li, Sanda 00)

Explanation 1

- How to understand the small $A_{CP}(K^+\pi^0)$?
- Large P_{EW} to rotate P (Buras et al.; Yoshikawa; Gronau and Rosner; Ciuchini et al., Kundu and Nandi, Wu and Zhou)
- Also motivated by old large $B(K^0\pi^0)$ data \Rightarrow new physics?

Explanation 2

 Large C to rotate T (Charng and Li; He and McKellar)

⇒ mechanism missed in naïve power counting?

• C is subleading by itself. Try NLO PQCD.

Vertex correction

• Vertex correction enhances $C \propto a_2$, and makes it almost imaginary.

Without vertex correction

Re, with vertex correction Im, with vertex correction Is negative. It rotates T!

PQCD results

Hadronic

uncertainty

Mode	Data [1]	\mathbf{LO}	LONLOWC	; +VC	+QL	+MP	+NLO 🗸
$B^\pm \to \pi^\pm K^0$	24.1 ± 1.3	17.3	32.9	31.6	34.9	24.5	$24.9^{+13.9(+13.2)}_{-8.2(-8.2)}$
$B^\pm \to \pi^0 K^\pm$	12.1 ± 0.8	10.4	18.7	17.7	19.7	14.2	$14.2^{+10.2}_{-5.8}(-4.3)$
$B^0 \to \pi^\mp K^\pm$	18.9 ± 0.7	14.3	28.0	26.9	29.7	20.7	$21.1^{+15.7}_{-8.4}(-6.6)$
$B^0 \to \pi^0 K^0$	11.5 ± 1.0	5.7	12.2	11.9	13.0	8.8	$9.2^{+5.6(+5.1)}_{-3.3(-3.0)}$
$B^0 \to \pi^\mp \pi^\pm$	5.0 ± 0.4	7.1	6.8	6.6	6.9	6.7	$6.6^{+6.7}_{-3.8}(+2.7)$
$B^\pm \to \pi^\pm \pi^0$	5.5 ± 0.6	3.5	4.2	4.1	4.2	4.2	$4.1^{+3.5}(+1.7)$
$B^0 \to \pi^0 \pi^0$	1.45 ± 0.29	0.12	0.28	0.37	0.29	0.21	$\underbrace{0.30^{+0.49}_{-0.21}(+0.12)}_{-0.21}$
Mode	Data [1]	LO	LONLOWC	+VC	+QL -	+MP	+NLO
$B^{\pm} \rightarrow \pi^{\pm} K^{0}$	-0.02 ± 0.04	-0.01	-0.01	-0.01	0.00	-0.01	$0.00\pm 0.00(\pm 0.00)$
$B^{\pm} \rightarrow \pi^0 K^{\pm}$	0.04 ± 0.04	-0.08	-0.06	-0.01	-0.05 -	-0.08	$-0.01^{+0.03}_{-0.05}(-0.05)$
$B^0 \to \pi^{\mp} K^{\pm}$	-0.115 ± 0.018	-0.12	-0.08	-0.09 ·	-0.06	-0.10 -	$-0.09 \frac{+0.06}{-0.08} (+0.04)$
$B^0 ightarrow \pi^0 K^0$		-0.02	0.00	-0.07	0.00	0.00 -	$-0.07^{+0.03}_{-0.03}(+0.01)$
$B^0 \to \pi^\mp \pi^\pm$	0.37 ± 0.10	0.14	0.19	0.21	0.16	0.20	$0.18^{+0.20(+0.07)}_{-0.12(-0.06)}$
$B^\pm o \pi^\pm \pi^0$	0.01 ± 0.06	0.00	0.00	0.00	0.00	0.00	$0.00 \pm 0.00 (\pm 0.00)$
$B^0 \rightarrow \pi^0 \pi^0$	$0.28^{+0.40}_{-0.39}$	-0.04	-0.34	0.65 \cdot	-0.41 -	-0.43	$0.63^{+0.35(+0.09)}_{-0.34(-0.15)}$

QCDF

 δ_T has a wrong sign in QCDF. C makes the situation worse.

SCET

- C/T is real in leading SCET, and large from the $\pi\pi$ data.
- C can not reduce A_{CP}(K⁺π⁰) (hep-ph/0510241).

Large P_{ew}?

 A_{CP}(K⁺π⁻) is insensitive to NLO. NLO could modify C, and thus A_{CP}(K⁺π⁰). C remains subleading, and branching ratios do not change much.

Mixing-induced $\not{C}\not{P}$ in b \rightarrow s

Calculation of the time-dependent CP asymmetry

$$\begin{split} A_{f_{CP}}(t) &= \frac{\left| \left\langle f_{CP} \left| H \left| \overline{B}^{0}(t) \right\rangle \right|^{2} - \left| \left\langle f_{CP} \left| H \left| B^{0}(t) \right\rangle \right|^{2} \right. \right. \right. \right. \\ &\left. \left. \left| \left\langle f_{CP} \left| H \left| \overline{B}^{0}(t) \right\rangle \right|^{2} + \left| \left\langle f_{CP} \left| H \right| B^{0}(t) \right\rangle \right|^{2} \right. \right. \\ &= \frac{\Gamma\left(\overline{B}^{0}(t) \to f_{CP} \right) - \Gamma\left(B^{0}(t) \to f_{CP} \right) \\ \Gamma\left(\overline{B}^{0}(t) \to f_{CP} \right) + \Gamma\left(B^{0}(t) \to f_{CP} \right) \end{split}$$

$$\begin{split} A_{f_{CP}}(t) &= S \cdot \sin(\Delta m \cdot t) - C \cdot \cos(\Delta m \cdot t) & \text{Am: Mass difference} \\ S &= \frac{2 \cdot \operatorname{Im}(\lambda)}{1 + |\lambda|^2} & C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2} & \text{of two B} \\ \text{eigenstates} \\ \hline \frac{1 \text{ decay amplitude:}}{|\lambda| = 1} & \Rightarrow S = \operatorname{Im}(\lambda), C = 0 \\ A_{f_{CP}}(t) &= \operatorname{Im}(\lambda) \cdot \sin(\Delta m \cdot t) \end{split}$$

Calculating λ

$sin 2\phi_1/sin 2\beta$

- 1 decay amplitude, $\lambda_{f_{CP}} = exp(-2i\phi_1)$
- Measure $S_{f_{CP}} \propto Im \lambda_{f_{CP}} \Rightarrow measure sin(2\phi_1)$
- Either pure-tree or pure-penguin modes serve the purpose
- Tree-dominant $B \rightarrow J/\psi K_S$, penguin pollution: P/T~ $(C_4/C_2)(V_{us}V_{ub}/V_{cs}V_{cb}) \sim \lambda^4 \sim 0.2\%$
- Penguin-dominant $b \rightarrow s$, tree pollution:

$$\lambda_{\pi^0 K_S} = -e^{-2i\phi_1} \frac{P' - P'_{ew} - C'e^{-i\phi_3}}{P' - P'_{ew} - C'e^{i\phi_3}},$$

 $\text{C'/P'}\sim\lambda^2\sim5\%$

 $sin(2\beta^{eff})/sin(2\phi_1^{eff})$ I P 2005 PRELIMINARY

Penguin-dominated $\Delta S \equiv "\sin 2\phi_1'' - \sin 2\phi_1$ **Tree-dominated** ∆S≠0 by about 1σ A puzzle?

 ΔS puzzle is still there

Recent theoretical calculation of ΔS

	QCDF+FSI Cheng-Chua- Soni	QCDF Beneke	QCDF Buchalla- Hiller-Nir-Raz	SCET Williamson-Zupan	PQCD Li, Mishima	
∆S(∳Ks)	$0.03^{+0.01}_{-0.04}$	0.02 ± 0.01	0.02		0.03 ^{+0.01} -0.01	
Δ S(η'Ks)	$0.00^{+0.00}_{-0.04}$	0.01 ± 0.01	$0.01^{+0.01}_{-0.02}$	$-0.019 \pm 0.008 \\ -0.010 \pm 0.010$		
ΔS(π ⁰ Ks)	$0.04^{+0.02}_{-0.03}$	$0.07^{+0.05}_{-0.04}$	$0.06^{+0.04}_{-0.03}$	0.077 ± 0.030	0.05 ^{+0.02} -0.03	

 $\Delta S \propto cos \delta_{C},$ large C but $\delta_{C} \approx$ 90° in NLO PQCD

All approaches gave consistent results, and small uncertainty. Tree pollution remains small even with NLO. Promising new physics signal, if data persist.

B_s–B_sbar mixing

Δm_d and Δm_s : constraints in the (ρ - η) plane

$$\Delta m_{s} = \frac{G_{F}^{2}}{6\pi^{2}} m_{B_{s}} m_{W}^{2} \eta_{B} S_{0}(x_{t}) f_{B_{s}}^{2} B_{s} \left| V_{ts} V_{tb}^{*} \right|^{2}$$

The point is:

Very weak dependence on
$$\rho$$
 and η

$$f_{B_{s}}^{2}B_{s} = \frac{f_{B_{s}}^{2}B_{s}}{f_{B_{d}}^{2}B_{d}}f_{B_{d}}^{2}B_{d} = \xi^{2}f_{B_{d}}^{2}B_{d}$$

ξ: SU(3)-breaking corrections

Measurement of Δm_s reduces the uncertainties on $f_{B_d}^2 B_d$ since ξ is better known from Lattice QCD

$$\sigma_{\rm rel}\left(f_{B_{d/s}}^2 B_{d/s}\right) = 36\% \quad \Rightarrow \quad \sigma_{\rm rel}\left(\xi^2 = f_{B_s}^2 B_s / f_{B_d}^2 B_d\right) = 10\%$$

→Leads to improvement of the constraint from Δm_d measurement on $|V_{td}V_{tb}^*|^2$

$$\Delta m_{d} = \frac{G_{F}^{2}}{6\pi^{2}} m_{B_{d}} m_{W}^{2} \eta_{B} S_{0}(x_{t}) f_{B_{d}}^{2} B_{d} |V_{td} V_{tb}^{*}|^{2} \propto A^{2} \lambda^{6} \left[(1 - \overline{\rho})^{2} + \overline{\eta}^{2} \right]$$

Δm_s

The signal has a significance of 5.4σ

Constraint on |V_{td}/V_{ts}|

CKM fit w/o Δm_s 1.2 $\frac{\Delta m_d}{\Delta m_s} = \frac{m_{Bd}}{m_{Bs}} \xi_{\Delta m}^{-2} \frac{|V_{td}|^2}{|V_{ts}|^2}$ BEAUTY 06 **CDF** measurement нен $H A = BR(B^0 \to \rho^0 \gamma) / BR(B^0 \to K^{*0} \gamma)$ WA 1 0.8 - CL 0.6 0.4 BRs WA - $\xi_{V\gamma,SU(3)} = 1.17 \pm 0.09$ (hep-ph/0603232) → First strong p_{(d,s),SU(3)} = 1.21^{+0.047}_{-0.035} (hep-lat/0510113) indication that 0.2 B_s-B_s mixing is probably SM-0.16 0.22 0.2 0.24 0.26 0.28 0.18 0.3 like. $|V_{td}/V_{ts}|$

Putting it all together_

LHCb physics

- It is time to calculate B_s decays
- Yu, Li, Lu 05, 06
- Xiao, Chen, Guo 06; Xiao, Liu, Wang 06
- Wu, Zhong, Zuo 06

Polarization in $B \rightarrow VV$

Many works from Lu's group using PQCD

	Branching ratio		polarizat	tion fraction $R_L(\%)$		
Decay	theory	exp.	theory	exp.	$R_{\parallel}(\%)$	$R_{\perp}(\%)$
$B^0 \rightarrow \rho^- K^{*+}$	10-13	≤ 24	71 - 78		12	10
$B^+ \rightarrow \rho^+ K^{*0}$	13-17	10.5 ± 1.8	76 - 82	66 ± 7	13	10
$B^+ \rightarrow \rho^0 K^{*+}$	6-9	$10.6^{+3.8}_{-3.5}$	78 - 85	$96^{+4}_{-15} \pm 4$	11	11
$B^+ \rightarrow \omega K^{*+}$	5-8	< 7.4	73 - 81		19	9
$B^0 \rightarrow \rho^+ \rho^-$	$35 \pm 5 \pm 4$	30 ± 6	94	96^{+4}_{-7}	3	3
$B^+ \rightarrow \rho^+ \rho^0$	$17 \pm 2 \pm 1$	$26.4^{+6.1}_{-6.4}$	94	99 ± 5	4	2
$B^+ \to \rho^+ \omega$	$19 \pm 2 \pm 1$	$12.6^{+4.1}_{-3.8}$	97	88^{+12}_{-15}	1.5	1.5
$B^0 \to \rho^0 \rho^0$	$0.9\pm0.1\pm0.1$	< 1.1	60	-	22	18
$B^0 \rightarrow \rho^0 \omega$	$1.9\pm0.2\pm0.2$	< 3.3	87	-	6.5	6.5
$B^0 \to \omega \omega$	$1.2\pm0.2\pm0.2$	< 19	82	-	9	9

Conclusion

- Great progress in theoretical and experimental studies of B physics has been made.
- Discrepancies have appeared, but are not significant enough for new physics discovery.
- Continuous effort is required.