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Introduction 

 Chiral EFT approach to NN interactions (nonperturbative). 

Weinberg’s proposal: TVGVT 0+= ; constructed from chiral 

perturbation theory. Advent of EFT approach to nuclear systems, 

basing on guiding principles from QCD—chiral symmetry; 

V

 This approach proves successful, but there remain some difficult 

issues or challenges. One of the most persevering ones: Disputes 

over the EFT power counting and renormalization. Origin: The 

presence of large scattering lengths (hence unnatural from the 

EFT perspective)  in low energy NN scattering poses serious 

challenges to treating power counting for EFT interactions and 

renormalization coherently in nonperturbative regime. 

 Recent evidences (Phys. Rev. C72 (2005) 054006, Phys. Rev. C77 

(2008) 014002, arXiv: 0709.2770[nucl-th]) show that a few counter 

terms ‘suffice’ in nonperturbative regime (at least for 1S0 and 

other channels) with potentials truncated up to N3LO. That means 

perturbative arguments or concepts about counterterms and 

anomalous dimension of EFT operators may be misleading in 

nonperturbative regimes (Kaplan, arXiv: nucl-th/0510023). 

 

 

 



Reanalysis:  (I) Rigorous solutions of LSE in pionless 

EFT 

 

 Pionless EFT and factorized LSE for NN scattering in partial 

wave formalism (Ann. Phys. 263 (1998) 255, Phys. Rev. C71 

(2005) 034001) (Consider uncoupled channels for simplicity): 
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Then Lippmann-Schwinger equation (LSE) reduces to the 

following algebraic form:     
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 are ill-defined integrals and M is 

nucleon mass. 

 (Nonperturbative) renormalization: to render the integrals ( ) 

finite. These integrals could be generally parametrized as follows: 
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, with  being finite 

in a renormalization prescription.  is singled out for reasons to 

be clear shortly. (Phys. Rev. C71 (2005) 034001) 
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 Rigorous on-shell T matrix( MEp = ):          
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where , , and are 

also polynomials in terms of the EFT couplings and 

renormalization parameters  (except ), i.e., they are 

formally ‘chiral’ perturbative. Note,  ‘stands’ alone in the 

inverse T, unlike the rest of  that are ‘entangled’ with EFT 

couplings in the rigorous solutions of T. 
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(2) P channels： 
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*Warning: (1) Nonperturbative ‘subtraction’ is necessary (on integrals 

rather than on vertices, Phys. Lett. B429 (1998) 227). (2) Different 

regularization schemes yield inequivalent results before subtraction is 

performed in nonperturbative regime(Ann. Phys. 263 (1998) 255). E.g., 



for 1S0 in DR, , then, with0=KJ 0→ε , we have 
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Hard to obtain equivalent T matrices across the two regularization 

schemes in nonperturbative regime. 

 

 

 

 

 

 

 

 

 



Reanalysis:  (II) Novel features revealed from the above 

rigorous solution 

From above we could find that, in nonperturbative 

regime:  

(1) Only finite many divergent integrals or renormalization 

parameters are involved in the rigorous nonperturbative solutions 

of T matrices, not ‘infinite’ (from the iterative point of view of 

LSE), a novel notion of ‘finiteness’. That means, to obtain a 

finite T matrix, only a finite number of divergences are to be 

treated or ‘subtracted’ nonperturbatively. Recent progresses are 

in accordance with this notion. 

(2) It is hard to devise a systematic program of subtraction (like the 

well known perturbative renormalization) on the nonperturbative 

T matrix in order to obtain a finite T matrix from the 

nonperturbative form beset with divergences, at least not 

generally established yet; 

(3)  holds a special position (except 1S0 at LO!). In fact for any 

L-wave, the p-dependence of the inverse on-shell T matrix 
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appropriate ratios of the coefficients of this rational function of p 

are physical objects that are must be invariant as renormalization 

prescription or scale varies. Thus,  must be a physical scale or 0J



RG invariant in order to yield physical p-dependence in 
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 in all channels. So are the ratios like 

, . 0/ NN j 0/ ND j

(4) Strong prescription dependence, this is obvious from the form of 

the T matrix given above; 

(5) Failure of some perturbative wisdoms about renormalization. Let 

us elaborate on this point: 

In 1S0 at LO of potential, there is no further p-dependence besides 

the imaginary part. Here the scattering length could be obtained as 
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define a renormalized coupling  in similar fashion as in 

perturbative program: 
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Savage and Wise did in their approach (Phys. Lett. B424, 390 

(1998)). However, this scenario breaks down as one goes one order 

higher about the potential, where  alone must be RG invariant. At 

 for 1S0, we could still define renormalized couplings for  

and  via the requirement that the ratios , must be 

RG invariant: 
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is independent of p!. Then we could obtain the following 

nonperturbative running couplings:  
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However, at higher order with 4≥Δ , the factor  in N
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0  become p-dependent, there will be extra constraints 

from the RG invariance of the ratios  in addition to . 

Then it is more difficult for the couplings and the running scale to 

conspire to fulfill all the requirements. In fact, since the same  

should be used in all channels, each channel would pose different 

constraints upon the couplings and , making things even worse. 
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One way out is to abandon the conventional wisdom developed in 

perturbative regimes and seek for true nonperturbative 

understandings of the issues. That means novel notions and 

theoretical mechanisms are needed to tackle renormalization in 

nonperturbative regimes.  

 

(In practice, these difficulties have been circumvented in most 

literature by turning to numerical approaches where a finite cutoff 

are employed, which is then no longer a true renormalization at all.) 

 

(6) The above difficulties also imply that the most crucial work in 

nonperturbative regimes is find efficient methods to parametrize 

the nonperturbative divergence and their renormalization (or 

removal) in a general way. It is then possible to discuss other 

issues. 

 

 

 

 

 

 

 



Reanalysis:  (III) Nonperturbative scenario and 

predictions from pionless EFT 

 

Here, within the realm of pionless EFT, we present a very simple 

scenario of power counting of both the EFT couplings and the 

renormalization prescription or the parameters  in the 

nonperturbative regime, then we show some interesting predictions 

(arXiv: 0711.4637[nucl-th]): 
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Here the scale μ  is of the order of a typical EFT scale. That is, the 

EFT couplings still follow the conventional EFT power counting 

(Weinberg), we refrain us from making any modification of it. In the 

meantime, most of the renormalization parameters scale similarly as 

the conventional ones except  which holds a very special position 

as shown above.  
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Now, with such a nonperturbative scenario in the realm of contact 

potentials (pionless EFT), we could obtain some interesting 

theoretical predictions for the effective range parameters for the NN 

scattering defined as below, ∑
∞
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Using the rigorous solutions given above, we could find that some 



ERE parameters are unnaturally sized while the rest are naturally 

sized. Here by naturalness we mean that, ERE are functions of the 

upper scale , and unnaturalness refers to that of the smaller scale Λ

μ . The predictions for the uncoupled channels as summarized in the 

following table: 

 

Channels  Natural ERE parameters Unnatural ERE parameters

1S0 { } 2,, ≥kvr ke { a } 

1P1,3P0,3P1 { } 2,, ≥kva k { } er

1D2,3D2 { } 3,,, ≥kvra ke { } 2v

L-waves { 3,,2,,, ≥≠≥ LLkkvra ke } { } Lv

 

Similar predictions for the ERE parameters or scattering behaviors 

could be found in any nonrelativistic systems whose dynamics is 

governed by similar contact potentials and power counting 

considered here.  

We stress that this is only true in the scenario given above, (11)! 

 

For coupled channels like 3S1-3D1, etc., there are some modest 

modifications to the picture listed above due to the effects of mixing 

of partial waves. 

 



Reanalysis:  (IV) Approximate methods and test of EFT 

approach-Padé approximant 

 

The above discussions are only valid within contact potentials 

though rigorous, as the realistic pion-exchange potentials are put 

aside. The dynamical pictures depicted above may be relevant to 

very low energy region NN scattering ( πmE << ) where all 

interactions might be described by contact potentials, or pionless 

EFT. For modest energies ( πmE ≈ ), the pion-exchange potentials 

must be included explicitly. 

 

How to treat the nonperturbative renormalization prescriptions in 

such cases as rigorous solutions of T matrix are hard to reach? Many 

different approaches have been proposed and studied. To date, there 

is no complete consensus concerning the consistent treatment of 

power counting and renormalization. The most recent debates have 

been focused on how to work with the conventional EFT power 

counting in nonperturbative regimes and finally how to renormalize 

the NNEFT in nonperturbative regime in subtractive algorithm. 

There are even some mood of doubts on the applicability of the EFT 

approach to NN interactions and nuclear forces. 

 



In this section, we introduce a nonperturbative approximation 

method to parameterize the nonperturbative prescription dependence 

of the T matrix. This is simply done by turning the LSE into the 

following parametrization of on-shell T: GVT ~/1/1 −= , )/(~
0 VTTVGG = . 

Here the nonperturbative factor G~  exclusively assumes the 

information about nonperturbative renormalization due to the 

convolution with Green function . As power like divergences 

dominate the convolution, we tentatively apply Padé approximant to 

the nonperturbative factor G

0G

~ (arXiv: nucl-th/0310048, 0407090): 
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. Obviously, ( ji δν , ) contain the 

renormalization prescription dependence exclusively besides EFT 

couplings. Thus ( ji δν , ) provide an approximate parametrization of 

the nonperturbative renormalization prescription. The strong 

prescription dependence is obvious: given the potential already 

constructed in EFT, different values of these numbers would 

definitely yield different T-matrix: only one set of these numbers are 

acceptable, other values would be physically incorrect. 

 

We have investigated the utility of such approximation approach in a 

number of channels to test the EFT applicability. Below are a small 

part of it, where the most coarse approximation of G~ , a constant , 

is employed just to demonstrate our main points. We fit the low 

0g



energy ends of the phase shift curves to PWA data in order to 

determine the Padé constants ( ji δν , ). The rationale for EFT approach 

are reflected in the following aspects: (a) Given a certain type of 

Padé approximant, higher order NN potentials would yield better 

phase shift curves in a general sense; (b) Given a certain order of 

potential, more sophisticated Padé approximant yields better 

theoretical predictions.  

Phase shifts for 1S0, 1P1 and 1D2. For 1S0 channel, the empty 

circles are PWA data, while the phase shift curves computed with 

LO, NLO and NNLO potential are depicted with dotted, dashed and 

solid lines. The figure caption is clear for the rest two. 

    
 



 

 

 

 



In the meantime, we could examine the order of magnitude of the 

Pade constants to test the rationality of the EFT approach to NN 

systems in a coarse manner. If the EFT is applicable the constant 

scale extracted from the G~  factor should not fall outside of the EFT 

scope: . That is the scale2
0 1000000|| Mevg < Mevg 1000|| 0 < . In all the 

channels considered so far, this is true, in fact we have 

Mevg 600|| 0 ≤ . Of course, such a coarse approximation is far from 

being satisfactory, we could only find some demonstrative utility in 

it. More sophisticated Padé approximants are needed for more 

practical use. 

 

 

 

Summary 

1) Rigorous solutions of LSE within pionless EFT 

2) Novel features and notions of renormalization in nonperturbative 

regime beyond conventional wisdoms 

3) A simple nonperturbative scenario and the consequent predictions 

4) A nonperturbative approximation parametrization of prescription 

 

 

 



 

 

 

 

 

 

THANK YOU! 


