

成像的目的和意义 眼睛是人类感知世界最重要的器官,眼睛本身是一台发展完美的成像光学仪器,如望远镜、显微镜、照相机、雷达、医院里检查人体的X光透视设备、安检入口的危险物品检测设备等,都是人类眼睛的延伸,是人类遥望星空,观察微观世界,留下美好回忆,保证身体健康、建设安全生活环境不可或缺的工具。 科学发展无止境,成像研究也不会结束,需要不断研究成像的原理,需要研制出功能更强大的工具。

成像中的几个概念

- 并行成像:X射线投影成像、X射线透镜成像和相 干X射线无透镜成像为并行成像,各个像素同时 成像;
- 串行成像:X射线探针扫描成像为串行成像,各 个像素按顺序成像;
- 直接成像:X射线投影成像和X射线透镜成像为直接成像,又称一步成像;
- 间接成像: X射线全息成像和相干衍射成像为间 接成像,又称二步成像。

光的发生—光子或者波包 电子在加速或减速时,辐射出一份份的能量,称为 光子,又称为波包。之所以称为光子,是因为这每 一份能量在探测器上的显示为一个亮点;之所以称 为波包,是因为这每一份能量都具有波的性质,可 以发生干涉和衍射。 每个波包都有周期性的波阵面结构,波包内部各点 具有固定的相位关系;而波包之间没有相位关系。 因此,干涉只发生在波包内部,波包之间不会发生 干涉。 一般而言,光束是由众多前仆后继的波包构成。波 包的大与小、多与少,可以有成千上万个组合,造 成千变万化的结果,因而形成光束相干性的复杂性。

光到底是波还是粒子? 北到底是波还是粒子? 根据光子流密度等于光波振幅平方,正确的答案是:光既是 波,又是粒子。 在表面上看来,光波和光子是矛盾的,可是它们之间却存在 着不可分割、相互依存的关系。一方面,无论何时何地,使 用探测器去探测光,它总是以光子的形式出现;另一方面, 光的行为规范却是由光波决定的。当没有相互作用时,光子 可能出现在有光波的任何地方,可是当光和物质发生相互作 用时,就会有反射波和衍射波,光子一定在光波干涉或衍射 加强的地方出现的可能性大,而在光波干涉或衍射减弱的地 方出现的可能性小,特别是光子绝对不会出现在干涉或衍射 振幅为零的地方。因此,只须把光强看作光子出现的可能性, 光的波粒二象性之间就会协调一致。

光的相位

- 相位就是人们常说的步调。在前进的队伍中,步调相差半步或 半步奇数倍的两个人,手臂的摆动是相反的,称为相位相反; 步调相差一步或一步整数倍的两个人,手臂的摆动是一致的, 称为相位相同。为了能用数学来描述运动的周期性,人们把它 和旋转箭头(就像人们用钟表记录日月的周而复始)的周期性 联系起来,用箭头旋转一圈,即2π相位,表示一步、一个波长 或者其它具有周期性的量。相位相差或奇数倍,称为相位相反, 相位相差 2π 或 2π 整数倍,称为相位相同。
- 两束相干光(同一个波包分为两部分,形成两束相干光)相遇, 在相遇的地点,若两束光相位相同,则会互相加强,合振幅是 两束光振幅之和,产生亮纹;若两束光相位相反,则会互相抵 消,合振幅是两束光振幅之差,产生暗纹。由此可以体会到, 当两束光相干时,光子流向相位一致的地方,相位衬度成像就 是利用相位调控光子流向的特点,对样品进行成像的。

相位信号分类

- 当平面光波经过样品时,可能引起波阵面发生三种变化,产生三种相位信号:
- (1)样品中像加速器或减速器,引起光波阵面出现 超前或落后,产生相位差信号;
- (2)样品像棱镜,引起光波阵面倾斜,导致光的折射,其折射角与相位一阶导数成正比;
- (3)样品像透镜,引起光波阵面弯曲,导致光强的 聚焦或者发散,可以用相位二阶导数描述波阵面的弯 曲程度。

相位探测原理

 虽然相位本身是看不见的,但是它可以通 过调控光强来表明它的存在。相位探测的 基本原理是,通过探测相位引起的光强变 化来探测样品的。

光线直线传播的五种可能性
与探测器像素直径对应的传播管道
真空中传播的光线 平面波
▲ 吸收光线 振幅衰减的平面波 ————————————————————————————————————
相位一阶导数光线 方向变化的平面波
相位二阶导数光线 凸凹变化的球面波

相干性的研究内容

- 一般光源发出的光束,都是多个波包构成的,干涉 条纹是波包自干涉形成的,不同波包的干涉条纹之 间的错位,会使干涉条纹消失的无影无踪。
- 相干性是研究如何产生干涉条纹的学问,研究光束 宽度和光子流向必须满足什么关系,才能产生干涉 条纹,研究光程差必须满足什么关系,才能产生干 涉条纹。
- 空间相干性:研究光束宽度和光子流向之间的关系
- 时间相干性: 研究光程差和干涉条纹清晰度的关系
- ■研究方法:双孔干涉

研究相干性的装置

- 来自两个灯泡的两束光,
 不会产生干涉条纹;
- 一个灯泡照射下的双缝,
 不会产生干涉条纹;
- 1801年英国医生托马斯·杨 先用单孔从灯泡光中滤出 相干光,然后用双孔获得 干涉条纹。

需要研究的问题

- (1)干涉条纹为什么随着单缝增宽或者距离变近而模糊?
- (2)干涉条纹为什么中间清楚,两边模糊?
- ●第一个问题引入空间相 干性;
 - 第二个问题引入时间相 干性。

习近平视察纳米成像光束线

(1) 合肥同步辐射纳米CT研究成果

■ 硫化铜(Cu₂S)十四面晶体三维成像,被Nature China作为 来自中国大陆的研究亮点工作予以报道。

• APL, 92, 233104 (2008).

(3) 纳米成像在环境科学中的应用

 土壤中的碳是大气中的两倍。中国科学院大学崔骁勇课题 组与本课题组合作,利用纳米CT获得了土壤微团聚体不 同成分的三维结构分布。微团聚体外围是大空隙,微团聚 体内部存在小空隙,部分矿质颗粒通过有机质粘合在一起 ,有机碳非均匀地包裹在矿质颗粒团聚体里。

左为土壤三维结构,中为有机质三维结构,右为矿物质三维结构

(7) 纳米成像在宇宙学中的应用研究

 意大利INFN Augusto Marcelli 课题组与本课题合作,试 图确定星际尘埃内部的结构和成分,搞清楚星际尘埃的来 源和分布。

(9)	纳米成像在	E能源科学	的应用
Avizo 此方出社日 添加目二	 油页岩是 本课题组 行了纳米 油、气页 在微米和 	未来的替代能 对美国的油页 分辨三维成像 岩中储油、储 纳米量级,纳	源之一。 岩样品进 。 气孔结构 米三维成
油贝宕样品: 透视显示	像可以估 在油页岩 孔的形状	算出储油、储 中的比例,清 。这对评估油	气孔体积 楚显示出 h、气储量,
	提高开采	效率,具有重	要意义。
	成分 储油孔 页岩	(nm3) 1.58E+12 4.32E+13	^{1 本 枳}
Avizo <u>····································</u>	矿物质颗粒	4.49E+12	9.12%

